On considère une application , Anosov non linéaire qui conserve l’aire sur le tore . C’est un des exemples les plus simples d’une dynamique chaotique. On s’intéresse à la dynamique quantique pour les temps longs, générée par un opérateur unitaire . La formule des traces semi-classique habituelle exprime pour fini, dans la limite , en termes d’orbites périodiques de de période . Des travaux récents atteignent des temps où est le temps d’Ehrenfest, et est le coefficient de Lyapounov. En utilisant une description uniforme de la dynamique au moyen d’une forme normale semi-classique, nous montrons comment étendre la formule des traces pour des temps plus longs, de la forme , où est une constante arbitraire, et avec une erreur arbitrairement petite.
We consider a nonlinear area preserving Anosov map on the torus phase space, which is the simplest example of a fully chaotic dynamics. We are interested in the quantum dynamics for long time, generated by the unitary quantum propagator . The usual semi-classical Trace formula expresses for finite time , in the limit , in terms of periodic orbits of of period . Recent work reach time where is the Ehrenfest time, and is the Lyapounov coefficient. Using a semi-classical normal form description of the dynamics uniformly over phase space, we show how to extend the trace formula for longer time of the form where is any constant, with an arbitrary small error.
Keywords: Quantum chaos, hyperbolic map, semiclassical trace formula, Ehrenfest time
Mot clés : chaos quantique, application hyperbolique, formule des traces semi-classique, temps d’Ehrenfest
Faure, Frédéric 1
@article{AIF_2007__57_7_2525_0, author = {Faure, Fr\'ed\'eric}, title = {Semi-classical formula beyond the {Ehrenfest} time in quantum chaos. {(I)} {Trace} formula}, journal = {Annales de l'Institut Fourier}, pages = {2525--2599}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, volume = {57}, number = {7}, year = {2007}, doi = {10.5802/aif.2341}, mrnumber = {2394550}, zbl = {1145.81035}, language = {en}, url = {https://aif.centre-mersenne.org/articles/10.5802/aif.2341/} }
TY - JOUR AU - Faure, Frédéric TI - Semi-classical formula beyond the Ehrenfest time in quantum chaos. (I) Trace formula JO - Annales de l'Institut Fourier PY - 2007 SP - 2525 EP - 2599 VL - 57 IS - 7 PB - Association des Annales de l’institut Fourier UR - https://aif.centre-mersenne.org/articles/10.5802/aif.2341/ DO - 10.5802/aif.2341 LA - en ID - AIF_2007__57_7_2525_0 ER -
%0 Journal Article %A Faure, Frédéric %T Semi-classical formula beyond the Ehrenfest time in quantum chaos. (I) Trace formula %J Annales de l'Institut Fourier %D 2007 %P 2525-2599 %V 57 %N 7 %I Association des Annales de l’institut Fourier %U https://aif.centre-mersenne.org/articles/10.5802/aif.2341/ %R 10.5802/aif.2341 %G en %F AIF_2007__57_7_2525_0
Faure, Frédéric. Semi-classical formula beyond the Ehrenfest time in quantum chaos. (I) Trace formula. Annales de l'Institut Fourier, Tome 57 (2007) no. 7, pp. 2525-2599. doi : 10.5802/aif.2341. https://aif.centre-mersenne.org/articles/10.5802/aif.2341/
[1] Entropy and the localization of eigenfunctions (2004) (Ann. of Math.)
[2] Half-delocalization of eigenfunctions for the Laplacian on an Anosov manifold (2006) (ArXiv Mathematical Physics e-prints, math-ph/0610019)
[3] Geometrical methods in the theory of ordinary differential equations, Springer Verlag, 1988 | MR | Zbl
[4] Long time semiclassical approximation of quantum flows: A proof of the Ehrenfest time, Asymptot. Anal., Volume 21 (1999) no. 2, pp. 149-160 | MR | Zbl
[5] Random matrix theories and chaotic dynamics, Chaos and Quantum Physics, Proceedings of the Les Houches Summer School (1989), Volume 45 (1991), pp. 87-199 | MR
[6] Characterization of chaotic quantum spectra and universality of level fluctuation laws, Phys. Rev. Lett., Volume 52 (1984) no. 1, pp. 1-4 | DOI | MR | Zbl
[7] Exponential mixing and ln(h) timescales in quantized hyperbolic maps on the torus, Comm. Math. Phys., Volume 211 (2000), pp. 659-686 | DOI | MR | Zbl
[8] Long time propagation and control on scarring for perturbated quantized hyperbolic toral automorphisms, Annales Henri Poincaré, Volume 6 (2005) no. 5, pp. 885-913 | DOI | MR | Zbl
[9] Uniform semiclassical estimates for the propagation of quantum observables, Duke Math. J., Volume 111 (2002) no. 2, pp. 223-252 | DOI | MR | Zbl
[10] Quantum normal forms, moyal star product and bohr-sommerfeld approximation, J. Phys. A: Math. Gen., Volume 38 (2005), pp. 1997-2004 | DOI | MR | Zbl
[11] Ergodicité et fonctions propres du laplacien. (Ergodicity and eigenfunctions of the Laplacian), Commun. Math. Phys., Volume 102 (1985), pp. 497-502 | MR | Zbl
[12] Équilibre instable en régime semi-classique - I. Concentration microlocale, Communications in Partial Differential Equations, Volume 19 (1994) no. 9–10, pp. 1535-1563 | DOI | MR | Zbl
[13] Équilibre instable en régime semi-classique - II. Conditions de Bohr-Sommerfeld, Annales de l’Institut Henri Poincaré- Physique Théorique, Volume 61 (1994) no. 3, pp. 347-367 | Numdam | Zbl
[14] Singular bohr-sommerfeld rules, Commun. Math. Phys, Volume 205 (1999), pp. 459-500 | DOI | MR | Zbl
[15] A proof of the Gutzwiller semiclassical trace formula using coherent states decomposition, Commun. Math. Phys., Volume 202 (1999) no. 2, pp. 463-480 | DOI | MR | Zbl
[16] Semiclassical spreading of quantum wave packets and applications near unstable fixed points of the classical flow, Asymptotic Anal., Volume 14 (1997) no. 4, pp. 377-404 | MR | Zbl
[17] Recent results on quantum map eigenstates, Mathematical physics of quantum mechanics (Lecture Notes in Phys.), Volume 690, Springer, Berlin, 2006, pp. 367-381 | MR | Zbl
[18] Quantum chaos: a brief first visit, Second Summer School in Analysis and Mathematical Physics (Cuernavaca, 2000) (Contemp. Math.), Volume 289, Amer. Math. Soc., 2001, pp. 161-218 | MR | Zbl
[19] Nonstationnary normal forms and cocycle invariants, Random and Computational dynamics, Volume 1 (1992), pp. 229-259 | MR | Zbl
[20] On normal forms in hamiltonian dynamics, a new approach to some convergence questions, Ergod. Th. and Dynam. Sys., Volume 15 (1995), pp. 49-66 | DOI | MR | Zbl
[21] Spectral Asymptotics in the Semi-Classical Limit, London Mathematical Society Lecture Notes, 268, Cambridge University Press, 1999 | MR | Zbl
[22] Approach to ergodicity in quantum wave functions, Phys. Rev. E, Volume 52 (1995), pp. 5893-5903 | DOI
[23] Lectures on semiclassical analysis, 2003 (http://math.berkeley.edu/ zworski/)
[24] Semiclassical formula beyond the ehrenfest time in quantum chaos. (II) propagator formula, 2006 (in preparation)
[25] Prequantum chaos: Resonances of the prequantum cat map, Journal of Modern Dynamics, Volume 1 (2007) no. 2, pp. 255-285 | DOI | MR
[26] On the maximal scarring for quantum cat map eigenstates, Communications in Mathematical Physics, Volume 245 (2004), pp. 201-214 | DOI | MR | Zbl
[27] Scarred eigenstates for quantum cat maps of minimal periods, Communications in Mathematical Physics, Volume 239 (2003), pp. 449-492 | DOI | MR | Zbl
[28] Harmonic Analysis in phase space, Princeton University Press, 1989 | MR | Zbl
[29] Chaos and Quantum Physics, Les Houches Session LII 1989, North-Holland, 1991 | MR
[30] Traces and Determinants of Linear Operators, Birkhauser, 2000 | MR | Zbl
[31] The symbol of a function of a pseudo-differential operator., Annales de l’Institut Fourier, Volume 55 (2005) no. 7, pp. 2257-2284 | DOI | Numdam | Zbl
[32] Wave-trace invariants, Duke Math. J., Volume 83 (1996) no. 2, pp. 287-352 | DOI | MR | Zbl
[33] Periodic orbits and classical quantization conditions, J. Math. Phys., Volume 12 (1971), pp. 343-358 | DOI
[34] Chaos in classical and quantum mechanics, Springer-Verlag, 1991 | MR | Zbl
[35] Quantum Signatures of Chaos, Springer, 2001 | MR | Zbl
[36] Exponentially acurrate semiclassical dynamics: Propagation, localization, ehrenfest times, scattering, and more general states, Ann. Henri Poincaré, Volume 1 (2000), pp. 837-883 | DOI | MR | Zbl
[37] Hyperbolic dynamics, Handbook of Dynamical Systems, North Holland, Volume 1A (2002), pp. 239-320 | DOI | MR | Zbl
[38] Time dependant approach to semiclassical dynamics, J. Chem. Phys., Volume 62 (1975), pp. 1544-1555 | DOI
[39] The classical limit of quantum mechanical correlation funtions, Comm. Math. Phys., Volume 35 (1974), pp. 265-277 | DOI | MR
[40] Differentiability, rigidity and Godbillon-Vey classes for Anosov flows, Publ. Math., Inst. Hautes Étud. Sci., Volume 72 (1990), pp. 5-61 | DOI | Numdam | MR | Zbl
[41] The Birkhoff normal form for a Fourier integral operator. (La forme normale de Birkhoff pour un opérateur intégral de Fourier.), Asymptotic Anal., Volume 17 (1998) no. 1, pp. 71-92 | MR | Zbl
[42] Birkhoff normal forms for Fourier integral operators. II, Am. J. Math., Volume 124 (2002) no. 4, pp. 817-850 | DOI | MR | Zbl
[43] Birkhoff normal forms in semi-classical inverse problems, Math. Res. Lett., Volume 9 (2002) no. 2-3, pp. 337-362 | MR | Zbl
[44] Semiclassical dynamics with exponentially small error estimates, Comm. in Math. Phys., Volume 207 (1999), pp. 439-465 | DOI | MR | Zbl
[45] Introduction to the Modern Theory of Dynamical Systems, Cambridge University Press, 1995 | MR | Zbl
[46] Asymptotic properties of the periodic orbits of the cat maps, Nonlinearity, Volume 4 (1991), pp. 277-307 | DOI | MR | Zbl
[47] The cat maps: quantum mechanics and classical motion, Nonlinearity, Volume 4 (1991), pp. 309-341 | DOI | MR | Zbl
[48] The semiclassical evolution of wave-packets, Phys. Rep., Volume 138 (1986) no. 4–5, pp. 193-291 | DOI | MR
[49] An Introduction to Semiclassical and Microlocal Analysis, Universitext, Springer, New York, 2002 | MR | Zbl
[50] Evolution of lagrangian states through pertubated cat maps, Preprint, 2004
[51] Generalized coherent states and their applications, Springer-Verlag, 1986 | MR | Zbl
[52] Dynamical Systems and Ergodic theory, Cambridge University Press, 1998 | MR | Zbl
[53] Semi-classical behaviour of expectation values in time evolved lagrangian states for large times, Commun. Math. Phys., Volume 256 (2005), pp. 239-254 | DOI | MR | Zbl
[54] Resonances associated to a closed hyperbolic trajectory in dimension 2, Asymptotic Anal., Volume 36 (2003) no. 2, pp. 93-113 | MR | Zbl
[55] Quantum monodromy and semi-classical trace formulae, J. Math. Pures Appl., Volume 1 (2002), pp. 1-33 | MR | Zbl
[56] Long-time semi-classical dynamics of chaos: the stadium billard, Physical Review E, Volume 47 (1993), pp. 282 | DOI | MR
[57] Uniform distribution of the eigenfunctions on compact hyperbolic surfaces, Rev. Mod. Phys., Volume 55 (1987), pp. 919-941 | MR | Zbl
[58] Quantum dynamics from the semi-classical viewpoint, Lectures at I.H.P., 1996 (http://mathnt.mat.jhu.edu/zelditch)
[59] Wave invariants at elliptic closed geodesics, Geom. Funct. Anal., Volume 7 (1997) no. 1, pp. 145-213 | DOI | MR | Zbl
[60] Wave invariants for non-degenerate closed geodesics, Geom. Funct. Anal., Volume 8 (1998) no. 1, pp. 179-217 | DOI | MR | Zbl
[61] Quantum ergodicity and mixing of eigenfunctions, Elsevier Encyclopedia of Math. Phys, 2005
[62] Coherent states: theory and some applications, Rev. Mod. Phys., Volume 62 (1990), pp. 867 | DOI | MR
Cité par Sources :