Nous décrivons une idée simple d’algèbre linéaire, qui a été utilisée dans différentes branches des mathématiques, telles que la théorie des bifurcations, les équations aux dérivées partielles et l’analyse numérique. Sous le nom de la méthode des compléments de Schur c’est un des outils standard de l’algèbre linéaire appliquée. En e.d.p. et en analyse spectrale elle est parfois appelée la méthode des problèmes de Grushin, et ici nous nous concentrons sur son utilisation dans l’étude des problèmes en dimension infinie, venant des équations aux dérivées partielles de la physique mathématique.
We describe a simple linear algebra idea which has been used in different branches of mathematics such as bifurcation theory, partial differential equations and numerical analysis. Under the name of the Schur complement method it is one of the standard tools of applied linear algebra. In PDE and spectral analysis it is sometimes called the Grushin problem method, and here we concentrate on its uses in the study of infinite dimensional problems, coming from partial differential operators of mathematical physics.
Keywords: Grushin problem, Schur complement, Feshbach reduction, eigenvalues, resonances, trace formulæ
Mot clés : problème de Grushin, complément de Schur, réduction de Feschbach, valeurs propres, résonances, formules de trace
Sjöstrand, Johannes 1 ; Zworski, Maciej 2
@article{AIF_2007__57_7_2095_0, author = {Sj\"ostrand, Johannes and Zworski, Maciej}, title = {Elementary linear algebra for advanced spectral problems}, journal = {Annales de l'Institut Fourier}, pages = {2095--2141}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, volume = {57}, number = {7}, year = {2007}, doi = {10.5802/aif.2328}, mrnumber = {2394537}, zbl = {1140.15009}, language = {en}, url = {https://aif.centre-mersenne.org/articles/10.5802/aif.2328/} }
TY - JOUR AU - Sjöstrand, Johannes AU - Zworski, Maciej TI - Elementary linear algebra for advanced spectral problems JO - Annales de l'Institut Fourier PY - 2007 SP - 2095 EP - 2141 VL - 57 IS - 7 PB - Association des Annales de l’institut Fourier UR - https://aif.centre-mersenne.org/articles/10.5802/aif.2328/ DO - 10.5802/aif.2328 LA - en ID - AIF_2007__57_7_2095_0 ER -
%0 Journal Article %A Sjöstrand, Johannes %A Zworski, Maciej %T Elementary linear algebra for advanced spectral problems %J Annales de l'Institut Fourier %D 2007 %P 2095-2141 %V 57 %N 7 %I Association des Annales de l’institut Fourier %U https://aif.centre-mersenne.org/articles/10.5802/aif.2328/ %R 10.5802/aif.2328 %G en %F AIF_2007__57_7_2095_0
Sjöstrand, Johannes; Zworski, Maciej. Elementary linear algebra for advanced spectral problems. Annales de l'Institut Fourier, Tome 57 (2007) no. 7, pp. 2095-2141. doi : 10.5802/aif.2328. https://aif.centre-mersenne.org/articles/10.5802/aif.2328/
[1] Numerical linear algebra, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 1997 | MR | Zbl
[2] Boundary problems for pseudo-differential operators, Acta Math., Volume 126 (1971) no. 1-2, pp. 11-51 | DOI | MR | Zbl
[3] Perturbations of Jordan matrices (arXiv:math/0612158v)
[4] Spectral theory of Pauli-Fierz operators, J. Funct. Anal., Volume 180 (2001) no. 2, pp. 243-327 | DOI | MR | Zbl
[5] Spectral asymptotics in the semi-classical limit, London Mathematical Society Lecture Note Series, 268, Cambridge University Press, Cambridge, 1999 | MR | Zbl
[6] On the stability of null-space methods for KKT systems, SIAM J. Matrix Anal. Appl., Volume 18 (1997) no. 4, pp. 938-958 | DOI | MR | Zbl
[7] Introduction to the theory of linear nonselfadjoint operators, Translated from the Russian by A. Feinstein. Translations of Mathematical Monographs, Vol. 18, American Mathematical Society, Providence, R.I., 1969 | MR | Zbl
[8] Les problèmes aux limites dégénérés et les opérateurs pseudo-différentiels, Actes du Congrès International des Mathématiciens (Nice, 1970), Tome 2, Gauthier-Villars, Paris, 1971, pp. 737-743 | MR | Zbl
[9] Eigenvalue asymptotics for randomly perturbed non-selfadjoint operators (arXiv: math.SP/0601381)
[10] Résonances en limite semi-classique, Mém. Soc. Math. France (N.S.) (1986) no. 24-25, pp. iv+228 | EuDML | Numdam | MR | Zbl
[11] Équation de Schrödinger avec champ magnétique et équation de Harper, Schrödinger operators (Sønderborg, 1988) (Lecture Notes in Phys.), Volume 345, Springer, Berlin, 1989, pp. 118-197 | MR | Zbl
[12] Semiclassical analysis for Harper’s equation. III. Cantor structure of the spectrum, Mém. Soc. Math. France (N.S.) (1989) no. 39, pp. 1-124 | EuDML | Numdam | Zbl
[13] The analysis of linear partial differential operators. I, II, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], 256, 257, Springer-Verlag, Berlin, 1983 (Distribution theory and Fourier analysis) | MR | Zbl
[14] The analysis of linear partial differential operators. III, IV, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], 274,275, Springer-Verlag, Berlin, 1985 | MR | Zbl
[15] Birkhoff normal forms in semi-classical inverse problems, Math. Res. Lett., Volume 9 (2002) no. 2-3, pp. 337-362 | MR | Zbl
[16] Perturbation theory of non-conjugate operators, U.S.S.R. Comput. Math. and Math. Phys., Volume 6 (1966), pp. 73-85 | DOI | Zbl
[17] Bohr-Sommerfeld quantization condition for non-selfadjoint operators in dimension 2, Astérisque (2003) no. 284, pp. 181-244 (Autour de l’analyse microlocale) | MR | Zbl
[18] On the Lidskii-Vishik-Lyusternik perturbation theory for eigenvalues of matrices with arbitrary Jordan structure, SIAM J. Matrix Anal. Appl., Volume 18 (1997) no. 4, pp. 793-817 | DOI | MR | Zbl
[19] Operators of principal type with interior boundary conditions, Acta Math., Volume 130 (1973), pp. 1-51 | DOI | MR | Zbl
[20] Pseudospectrum for differential operators, Seminaire: Équations aux Dérivées Partielles, 2002–2003 (Sémin. Équ. Dériv. Partielles), École Polytech., Palaiseau, 2003, pp. Exp. No. XVI, 9 | EuDML | Numdam | MR | Zbl
[21] Asymptotics of the number of Rayleigh resonances, Math. Ann., Volume 309 (1997) no. 2, pp. 287-306 (With an appendix by Jean Lannes) | DOI | MR | Zbl
[22] Asymptotic distribution of resonances for convex obstacles, Acta Math., Volume 183 (1999) no. 2, pp. 191-253 | DOI | MR | Zbl
[23] Quantum monodromy and semi-classical trace formulae, J. Math. Pures Appl. (9), Volume 81 (2002) no. 1, pp. 1-33 (See also Quantum monodromy revisited, math.berkeley.edu/~zworski/qmr.ps) | MR | Zbl
[24] Pseudospectra of linear operators, SIAM Rev., Volume 39 (1997) no. 3, pp. 383-406 | DOI | MR | Zbl
[25] Survey on the inverse spectral problem (to appear) | Zbl
[26] Resonances in physics and geometry, Notices of the AMS, Volume 46 (1999) no. 3, pp. 319-328 | MR | Zbl
[27] Numerical linear algebra and solvability of partial differential equations, Comm. Math. Phys., Volume 229 (2002) no. 2, pp. 293-307 | DOI | MR | Zbl
Cité par Sources :