Annihilators of minus class groups of imaginary abelian fields
[Annulateurs pour la partie moins du groupe des classes d’un corps abélien imaginaire]
Annales de l'Institut Fourier, Tome 57 (2007) no. 5, pp. 1623-1653.

Pour certains corps imaginaires abéliens, on trouve des annulateurs pour la partie moins du groupe des classes en dehors de l’idéal de Stickelberger. En fonction du cadre précis, on emploie des méthodes différentes. Les résultats théoriques sont accompagnés de calculs numériques, ayant trait à quelques cas extrêmes.

For certain imaginary abelian fields we find annihilators of the minus part of the class group outside the Stickelberger ideal. Depending on the exact situation, we use different techniques to do this. Our theoretical results are complemented by numerical calculations concerning borderline cases.

DOI : 10.5802/aif.2309
Classification : 11R20, 11R29
Keywords: Imaginary abelian number fields, minus part of the ideal class group, annihilators, Stickelberger ideal, Fitting ideals
Mot clés : corps de nombres abéliens imaginaires, partie moins du groupe des classes, annulateurs, idéal de Stickelberger, idéaux de Fitting

Greither, Cornelius 1 ; Kučera, Radan 2

1 Universität der Bundeswehr München Fakultät für Informatik Institut für theoretische Informatik und Mathematik 85577 Neubiberg (Germany)
2 Masarykova univerzita Přírodovědecká fakulta Janáčkovo nám. 2a 602 00 Brno (Czech Republic)
@article{AIF_2007__57_5_1623_0,
     author = {Greither, Cornelius and Ku\v{c}era, Radan},
     title = {Annihilators of minus class groups of imaginary abelian fields},
     journal = {Annales de l'Institut Fourier},
     pages = {1623--1653},
     publisher = {Association des Annales de l{\textquoteright}institut Fourier},
     volume = {57},
     number = {5},
     year = {2007},
     doi = {10.5802/aif.2309},
     mrnumber = {2364145},
     zbl = {1128.11050},
     language = {en},
     url = {https://aif.centre-mersenne.org/articles/10.5802/aif.2309/}
}
TY  - JOUR
AU  - Greither, Cornelius
AU  - Kučera, Radan
TI  - Annihilators of minus class groups of imaginary abelian fields
JO  - Annales de l'Institut Fourier
PY  - 2007
SP  - 1623
EP  - 1653
VL  - 57
IS  - 5
PB  - Association des Annales de l’institut Fourier
UR  - https://aif.centre-mersenne.org/articles/10.5802/aif.2309/
DO  - 10.5802/aif.2309
LA  - en
ID  - AIF_2007__57_5_1623_0
ER  - 
%0 Journal Article
%A Greither, Cornelius
%A Kučera, Radan
%T Annihilators of minus class groups of imaginary abelian fields
%J Annales de l'Institut Fourier
%D 2007
%P 1623-1653
%V 57
%N 5
%I Association des Annales de l’institut Fourier
%U https://aif.centre-mersenne.org/articles/10.5802/aif.2309/
%R 10.5802/aif.2309
%G en
%F AIF_2007__57_5_1623_0
Greither, Cornelius; Kučera, Radan. Annihilators of minus class groups of imaginary abelian fields. Annales de l'Institut Fourier, Tome 57 (2007) no. 5, pp. 1623-1653. doi : 10.5802/aif.2309. https://aif.centre-mersenne.org/articles/10.5802/aif.2309/

[1] Cornacchia, P.; Greither, C. Fitting ideals of class groups of real fields with prime power conductor, J. Number Theory, Volume 73 (1998) no. 2, pp. 459-471 | DOI | MR | Zbl

[2] Darmon, H. Thaine’s method for circular units and a conjecture of Gross, Canad. J. Math., Volume 47 (1995) no. 2, pp. 302-317 | DOI | Zbl

[3] Greither, C. Über relativ-invariante Kreiseinheiten und Stickelberger-Elemente, Manuscripta Math., Volume 80 (1993) no. 1, pp. 27-43 | DOI | MR | Zbl

[4] Greither, Cornelius Some cases of Brumer’s conjecture for abelian CM extensions of totally real fields, Math. Z., Volume 233 (2000) no. 3, pp. 515-534 | DOI | Zbl

[5] Greither, Cornelius; Kučera, Radan Annihilators for the class group of a cyclic field of prime power degree. II, Canad. J. Math, Volume 58 (2006) no. 3, pp. 580-599 | DOI | MR | Zbl

[6] Hayward, A. A class number formula for higher derivatives of abelian L-functions, Compos. Math., Volume 140 (2004) no. 1, pp. 99-129 | DOI | MR | Zbl

[7] Kaplansky, I. Commutative rings, Polygonal Publishing House, Washington, NJ, 1994

[8] Kurihara, M. Iwasawa theory and Fitting ideals, J. Reine Angew. Math., Volume 561 (2003), pp. 39-86 | DOI | MR | Zbl

[9] Lang, Serge Cyclotomic fields I and II, Graduate Texts in Mathematics, 121, Springer-Verlag, New York, 1990 | MR | Zbl

[10] Sinnott, W. On the Stickelberger ideal and the circular units of an abelian field, Invent. Math., Volume 62 (1980/81) no. 2, pp. 181-234 | DOI | EuDML | MR | Zbl

[11] Washington, Lawrence C. Introduction to cyclotomic fields, Graduate Texts in Mathematics, 83, Springer-Verlag, New York, 1982 | MR | Zbl

Cité par Sources :