Embedding subsets of tori Properly into 2
[Plongement propre dans 2 de sous-ensembles de tores]
Annales de l'Institut Fourier, Tome 57 (2007) no. 5, pp. 1537-1555.

Nous avons fait des progrès sur le problème du plongement des surfaces de Riemann ouvertes dans 2 . Il est connu que pour tout entier naturel d2, le nombre N d :=3d 2+1 est le plus petit entier naturel pour lequel il existe un plongement propre de toute variété de Stein de dimension d dans N d . Le problème du plongement propre des variétés de Stein de dimension 1 dans 2 reste ouvert (il existe du plongement propre dans 3 ). Dans ce texte nous prouvons le résultat suivant  : soit 𝕋 un tore complexe de dimension 1  ; alors il existe un plongement propre de toute partie de 𝕋, dont la frontière a un nombre fini de composantes (aucune d’elle n’étant un point), dans 2 . Nous prouvons aussi que les algèbres de fonctions analytiques sur certaines surfaces de Riemann sont doublement générées.

Let 𝕋 be a complex one-dimensional torus. We prove that all subsets of 𝕋 with finitely many boundary components (none of them being points) embed properly into 2 . We also show that the algebras of analytic functions on certain countably connected subsets of closed Riemann surfaces are doubly generated.

DOI : 10.5802/aif.2305
Classification : 32H35, 30F99
Keywords: Holomorphic embeddings, Riemann surfaces
Mot clés : plongements holomorphiques, surfaces de Riemann

Wold, Erlend Fornæss 1

1 University of Oslo Department of Mathematics P.O. Box 1053, Blindern 0316 Oslo (Norway)
@article{AIF_2007__57_5_1537_0,
     author = {Wold, Erlend Forn{\ae}ss},
     title = {Embedding subsets  of tori {Properly} into $\mathbb{C}^2$},
     journal = {Annales de l'Institut Fourier},
     pages = {1537--1555},
     publisher = {Association des Annales de l{\textquoteright}institut Fourier},
     volume = {57},
     number = {5},
     year = {2007},
     doi = {10.5802/aif.2305},
     mrnumber = {2364141},
     zbl = {1149.32015},
     language = {en},
     url = {https://aif.centre-mersenne.org/articles/10.5802/aif.2305/}
}
TY  - JOUR
AU  - Wold, Erlend Fornæss
TI  - Embedding subsets  of tori Properly into $\mathbb{C}^2$
JO  - Annales de l'Institut Fourier
PY  - 2007
SP  - 1537
EP  - 1555
VL  - 57
IS  - 5
PB  - Association des Annales de l’institut Fourier
UR  - https://aif.centre-mersenne.org/articles/10.5802/aif.2305/
DO  - 10.5802/aif.2305
LA  - en
ID  - AIF_2007__57_5_1537_0
ER  - 
%0 Journal Article
%A Wold, Erlend Fornæss
%T Embedding subsets  of tori Properly into $\mathbb{C}^2$
%J Annales de l'Institut Fourier
%D 2007
%P 1537-1555
%V 57
%N 5
%I Association des Annales de l’institut Fourier
%U https://aif.centre-mersenne.org/articles/10.5802/aif.2305/
%R 10.5802/aif.2305
%G en
%F AIF_2007__57_5_1537_0
Wold, Erlend Fornæss. Embedding subsets  of tori Properly into $\mathbb{C}^2$. Annales de l'Institut Fourier, Tome 57 (2007) no. 5, pp. 1537-1555. doi : 10.5802/aif.2305. https://aif.centre-mersenne.org/articles/10.5802/aif.2305/

[1] Ahlfors, L. V. Complex Analysis., McGraw Hill, 1966 | MR | Zbl

[2] Alexander, H. Explicit imbedding of the (punctured) disc into 2 ., Math.Helv., Volume 52 (1977), pp. 439-544 | DOI | MR | Zbl

[3] Behnke, H.; Stein, K. Entwicklung analytisher Funktionen auf Riemannschen Flachen., Math. Ann., Volume 120 (1949), pp. 430-461 | DOI | MR | Zbl

[4] Eliashberg, Y.; Gromov, M. Embeddings of Stein manifolds of dimension n into the affine space of dimension 3n/2+1, Ann.Math., Volume 136 (1992), pp. 123-135 | DOI | MR | Zbl

[5] Forster, O. Plongements des variétés de Stein., Comm.Math.Helv., Volume 45 (1970), pp. 170-184 | DOI | MR | Zbl

[6] Forster, O. Lectures on Riemann Surfaces, Springer-Verlag, 1999 | MR | Zbl

[7] Forstnerič, F.; Černe, M. Embedding some bordered Riemann surfaces in the affine plane., Math. Res. Lett., Volume 9 (2002), pp. 683-696 | MR | Zbl

[8] Forstnerič, F. The homotopy principle in complex analysis: A survey., Contemp. Math., Amer. Math. Soc., Providence, RI, Volume 332 (2003), pp. 73-99 | MR | Zbl

[9] Forstnerič, F.; Løw, E. Global holomorphic equivalence of smooth manifolds in k , Indiana Univ.Math.J., Volume 46 (1997), pp. 133-153 | DOI | MR | Zbl

[10] Globevnik, J.; Stensønes, B. Holomorphic embeddings of some planar domains into 2 , Math. Ann., Volume 303 (1995), pp. 579-597 | DOI | MR | Zbl

[11] Goluzin, G. M. Geometric theorey of functions of a complex variable., American mathematical society, Providence, R.I., 1969 | MR | Zbl

[12] Gunning, R. C.; Rossi, H. Analytic functions of several complex variables, Prentice-Hall, Inc., 1965 | MR | Zbl

[13] He, Z-X.; Schramm, O. Fixed points, Koebe uniformization, and circle packings., Ann.Math., Volume 137 (1993), pp. 369-406 | DOI | MR | Zbl

[14] Kasahara, K.; Nishino, T. As announced in Math Reviews., Math.Reviews., Volume 38 (1969), pp. 4721

[15] Laufer, H. B. Imbedding annuli in 2 ., J. d’Analyse Math., Volume 26 (1973), pp. 187-215 | DOI | Zbl

[16] Malgrange, B. Existence et approximation des solutions des équations aux dérivées partielles et des équations de convolution., Ann. Inst. Fourier, Volume 6 (1955-56), pp. 271-354 | DOI | Numdam | MR | Zbl

[17] Schurmann, J. Embeddings of Stein spaces into affine spaces of minimal dimension., Math.Ann., Volume 307 (1997), pp. 381-399 | DOI | MR | Zbl

[18] Stolzenberg, G. Uniform approximation on smooth curves., Acta Math., Volume 115 (1966), pp. 185-198 | DOI | MR | Zbl

[19] Wold, E. F. Embedding Riemann surfaces into 2 ., Internat.J.Math, Volume 17 (2006), pp. 963-974 | DOI | MR | Zbl

[20] Wold, E. F. Proper holomorphic embeddings of finitely and some infinitely connected subsets of into 2 ., Math.Z., Volume 252 (2006), pp. 1-9 | DOI | MR | Zbl

Cité par Sources :