Nous avons fait des progrès sur le problème du plongement des surfaces de Riemann ouvertes dans . Il est connu que pour tout entier naturel , le nombre est le plus petit entier naturel pour lequel il existe un plongement propre de toute variété de Stein de dimension dans . Le problème du plongement propre des variétés de Stein de dimension 1 dans reste ouvert (il existe du plongement propre dans ). Dans ce texte nous prouvons le résultat suivant : soit un tore complexe de dimension 1 ; alors il existe un plongement propre de toute partie de , dont la frontière a un nombre fini de composantes (aucune d’elle n’étant un point), dans . Nous prouvons aussi que les algèbres de fonctions analytiques sur certaines surfaces de Riemann sont doublement générées.
Let be a complex one-dimensional torus. We prove that all subsets of with finitely many boundary components (none of them being points) embed properly into . We also show that the algebras of analytic functions on certain countably connected subsets of closed Riemann surfaces are doubly generated.
Keywords: Holomorphic embeddings, Riemann surfaces
Mot clés : plongements holomorphiques, surfaces de Riemann
Wold, Erlend Fornæss 1
@article{AIF_2007__57_5_1537_0, author = {Wold, Erlend Forn{\ae}ss}, title = {Embedding subsets of tori {Properly} into $\mathbb{C}^2$}, journal = {Annales de l'Institut Fourier}, pages = {1537--1555}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, volume = {57}, number = {5}, year = {2007}, doi = {10.5802/aif.2305}, mrnumber = {2364141}, zbl = {1149.32015}, language = {en}, url = {https://aif.centre-mersenne.org/articles/10.5802/aif.2305/} }
TY - JOUR AU - Wold, Erlend Fornæss TI - Embedding subsets of tori Properly into $\mathbb{C}^2$ JO - Annales de l'Institut Fourier PY - 2007 SP - 1537 EP - 1555 VL - 57 IS - 5 PB - Association des Annales de l’institut Fourier UR - https://aif.centre-mersenne.org/articles/10.5802/aif.2305/ DO - 10.5802/aif.2305 LA - en ID - AIF_2007__57_5_1537_0 ER -
%0 Journal Article %A Wold, Erlend Fornæss %T Embedding subsets of tori Properly into $\mathbb{C}^2$ %J Annales de l'Institut Fourier %D 2007 %P 1537-1555 %V 57 %N 5 %I Association des Annales de l’institut Fourier %U https://aif.centre-mersenne.org/articles/10.5802/aif.2305/ %R 10.5802/aif.2305 %G en %F AIF_2007__57_5_1537_0
Wold, Erlend Fornæss. Embedding subsets of tori Properly into $\mathbb{C}^2$. Annales de l'Institut Fourier, Tome 57 (2007) no. 5, pp. 1537-1555. doi : 10.5802/aif.2305. https://aif.centre-mersenne.org/articles/10.5802/aif.2305/
[1] Complex Analysis., McGraw Hill, 1966 | MR | Zbl
[2] Explicit imbedding of the (punctured) disc into ., Math.Helv., Volume 52 (1977), pp. 439-544 | DOI | MR | Zbl
[3] Entwicklung analytisher Funktionen auf Riemannschen Flachen., Math. Ann., Volume 120 (1949), pp. 430-461 | DOI | MR | Zbl
[4] Embeddings of Stein manifolds of dimension into the affine space of dimension , Ann.Math., Volume 136 (1992), pp. 123-135 | DOI | MR | Zbl
[5] Plongements des variétés de Stein., Comm.Math.Helv., Volume 45 (1970), pp. 170-184 | DOI | MR | Zbl
[6] Lectures on Riemann Surfaces, Springer-Verlag, 1999 | MR | Zbl
[7] Embedding some bordered Riemann surfaces in the affine plane., Math. Res. Lett., Volume 9 (2002), pp. 683-696 | MR | Zbl
[8] The homotopy principle in complex analysis: A survey., Contemp. Math., Amer. Math. Soc., Providence, RI, Volume 332 (2003), pp. 73-99 | MR | Zbl
[9] Global holomorphic equivalence of smooth manifolds in , Indiana Univ.Math.J., Volume 46 (1997), pp. 133-153 | DOI | MR | Zbl
[10] Holomorphic embeddings of some planar domains into , Math. Ann., Volume 303 (1995), pp. 579-597 | DOI | MR | Zbl
[11] Geometric theorey of functions of a complex variable., American mathematical society, Providence, R.I., 1969 | MR | Zbl
[12] Analytic functions of several complex variables, Prentice-Hall, Inc., 1965 | MR | Zbl
[13] Fixed points, Koebe uniformization, and circle packings., Ann.Math., Volume 137 (1993), pp. 369-406 | DOI | MR | Zbl
[14] As announced in Math Reviews., Math.Reviews., Volume 38 (1969), pp. 4721
[15] Imbedding annuli in ., J. d’Analyse Math., Volume 26 (1973), pp. 187-215 | DOI | Zbl
[16] Existence et approximation des solutions des équations aux dérivées partielles et des équations de convolution., Ann. Inst. Fourier, Volume 6 (1955-56), pp. 271-354 | DOI | Numdam | MR | Zbl
[17] Embeddings of Stein spaces into affine spaces of minimal dimension., Math.Ann., Volume 307 (1997), pp. 381-399 | DOI | MR | Zbl
[18] Uniform approximation on smooth curves., Acta Math., Volume 115 (1966), pp. 185-198 | DOI | MR | Zbl
[19] Embedding Riemann surfaces into ., Internat.J.Math, Volume 17 (2006), pp. 963-974 | DOI | MR | Zbl
[20] Proper holomorphic embeddings of finitely and some infinitely connected subsets of into ., Math.Z., Volume 252 (2006), pp. 1-9 | DOI | MR | Zbl
Cité par Sources :