Soit une variété analytique complexe de dimension au moins qui possède une fonction d’exhaustion telle que sa forme de Levi possède au moins valeurs propres strictement positives en tout point de . On construit les disques holomorphes dans par n’importe quel point donné et dans n’importe quelle direction donnée.
Let be a complex manifold of dimension at least which has an exhaustion function whose Levi form has at each point at least strictly positive eigenvalues. We construct proper holomorphic discs in through any given point and in any given direction.
Keywords: Complex manifolds, proper holomorphic discs
Mot clés : variété analytique complexe, disque holomorphe propre
Drinovec Drnovšek, Barbara 1
@article{AIF_2007__57_5_1521_0, author = {Drinovec~Drnov\v{s}ek, Barbara}, title = {On proper discs in complex manifolds}, journal = {Annales de l'Institut Fourier}, pages = {1521--1535}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, volume = {57}, number = {5}, year = {2007}, doi = {10.5802/aif.2304}, mrnumber = {2364140}, language = {en}, url = {https://aif.centre-mersenne.org/articles/10.5802/aif.2304/} }
TY - JOUR AU - Drinovec Drnovšek, Barbara TI - On proper discs in complex manifolds JO - Annales de l'Institut Fourier PY - 2007 SP - 1521 EP - 1535 VL - 57 IS - 5 PB - Association des Annales de l’institut Fourier UR - https://aif.centre-mersenne.org/articles/10.5802/aif.2304/ DO - 10.5802/aif.2304 LA - en ID - AIF_2007__57_5_1521_0 ER -
%0 Journal Article %A Drinovec Drnovšek, Barbara %T On proper discs in complex manifolds %J Annales de l'Institut Fourier %D 2007 %P 1521-1535 %V 57 %N 5 %I Association des Annales de l’institut Fourier %U https://aif.centre-mersenne.org/articles/10.5802/aif.2304/ %R 10.5802/aif.2304 %G en %F AIF_2007__57_5_1521_0
Drinovec Drnovšek, Barbara. On proper discs in complex manifolds. Annales de l'Institut Fourier, Tome 57 (2007) no. 5, pp. 1521-1535. doi : 10.5802/aif.2304. https://aif.centre-mersenne.org/articles/10.5802/aif.2304/
[1] -convexity. A survey, Complex analysis and geometry (Trento, 1995) (Pitman Res. Notes Math. Ser.), Volume 366 (1997), pp. 83-93 | MR | Zbl
[2] A domain in not containing any proper image of the unit disc, Math. Z., Volume 222 (1996), pp. 615-625 | DOI | MR | Zbl
[3] Holomorphic curves in complex spaces (to appear in Duke Math. J.) | Zbl
[4] Discs in pseudoconvex domains, Comment. Math. Helv., Volume 67 (1992), pp. 129-145 | DOI | MR | Zbl
[5] Proper holomorphic discs in , Math. Res. Lett., Volume 8 (2001), pp. 257-274 | MR | Zbl
[6] Discs in Stein manifolds, Indiana Univ. Math. J., Volume 49 (2000), pp. 553-574 | DOI | MR | Zbl
[7] Theory of -convexity and -concavity, Several complex variables, VII (Encyclopaedia Math. Sci.), Volume 74, Springer, Berlin, 1994, pp. 259-284 | MR | Zbl
[8] Embedding of open Riemannian manifolds by harmonic functions, Ann. Inst. Fourier (Grenoble), Volume 25 (1975), pp. 215-235 | DOI | Numdam | MR | Zbl
[9] Andreotti-Grauert theory by integral formulas, Progress in Mathematics, 74, Birkhäuser Boston Inc., Boston, MA, 1988 | MR | Zbl
[10] An introduction to complex analysis in several variables, North-Holland Publishing Co., Amsterdam, 1973 (North-Holland Mathematical Library, Vol. 7) | MR | Zbl
[11] Plurisubharmonic functions and analytic discs on manifolds, J. Reine Angew. Math., Volume 501 (1998), pp. 1-39 | MR | Zbl
[12] Approximation of non-holomorphic maps, and Poletsky theory of discs, J. Korean Math. Soc., Volume 40 (2003), pp. 423-434 | DOI | MR | Zbl
[13] Poletsky theory of disks on holomorphic manifolds, Indiana Univ. Math. J., Volume 52 (2003), pp. 157-169 | DOI | MR | Zbl
[14] The extension of regular holomorphic maps, Proc. Amer. Math. Soc., Volume 43 (1974), pp. 306-310 | DOI | MR | Zbl
[15] Real and complex analysis, McGraw-Hill Book Co., New York, 1987 | MR | Zbl
Cité par Sources :