Nous présentons les polynômes de Thom pour les singularités associées aux applications de paramètre . Nos calculs combinent la caractérisation des polynômes de Thom via la « méthode des équations restreintes » de Rimanyi et al. avec les techniques des fonctions de Schur.
We give the Thom polynomials for the singularities associated with maps with parameter . Our computations combine the characterization of Thom polynomials via the “method of restriction equations” of Rimanyi et al. with the techniques of Schur functions.
Keywords: Thom polynomials, singularities, global singularity theory, classes of degeneracy loci, Schur functions, resultants
Mot clés : polynômes de Thom, singularités, fonctions de Schur
Pragacz, Piotr 1
@article{AIF_2007__57_5_1487_0, author = {Pragacz, Piotr}, title = {Thom polynomials and {Schur} functions: the singularities $I_{2,2}(-)$}, journal = {Annales de l'Institut Fourier}, pages = {1487--1508}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, volume = {57}, number = {5}, year = {2007}, doi = {10.5802/aif.2302}, mrnumber = {2364137}, zbl = {1126.05099}, language = {en}, url = {https://aif.centre-mersenne.org/articles/10.5802/aif.2302/} }
TY - JOUR AU - Pragacz, Piotr TI - Thom polynomials and Schur functions: the singularities $I_{2,2}(-)$ JO - Annales de l'Institut Fourier PY - 2007 SP - 1487 EP - 1508 VL - 57 IS - 5 PB - Association des Annales de l’institut Fourier UR - https://aif.centre-mersenne.org/articles/10.5802/aif.2302/ DO - 10.5802/aif.2302 LA - en ID - AIF_2007__57_5_1487_0 ER -
%0 Journal Article %A Pragacz, Piotr %T Thom polynomials and Schur functions: the singularities $I_{2,2}(-)$ %J Annales de l'Institut Fourier %D 2007 %P 1487-1508 %V 57 %N 5 %I Association des Annales de l’institut Fourier %U https://aif.centre-mersenne.org/articles/10.5802/aif.2302/ %R 10.5802/aif.2302 %G en %F AIF_2007__57_5_1487_0
Pragacz, Piotr. Thom polynomials and Schur functions: the singularities $I_{2,2}(-)$. Annales de l'Institut Fourier, Tome 57 (2007) no. 5, pp. 1487-1508. doi : 10.5802/aif.2302. https://aif.centre-mersenne.org/articles/10.5802/aif.2302/
[1] Singularities. Local and global theory, Enc. Math. Sci., Volume 6 (Dynamical Systems VI), Springer, 1993 | Zbl
[2] Expressions for resultants coming from the global theory of singularities, Topics in algebraic and noncommutative geometry, (L.McEwan et al. eds.), Contemporary Math., Volume 324, Amer. Math. Soc., 2003, pp. 63-69 | MR | Zbl
[3] Hook Young diagrams with applications to combinatorics and to representation theory of Lie superalgebras, Adv. in Math., Volume 64 (1987), pp. 118-175 | DOI | MR | Zbl
[4] Thom polynomials for contact singularities, Harvard (1972) (Ph. D. Thesis)
[5] The geometry of topological stability, Oxford Math. Monograph, 1995 | MR | Zbl
[6] On second order Thom-Boardman singularities, Fund. Math., Volume 191 (2006), pp. 249-264 | DOI | MR | Zbl
[7] Calculation of Thom polynomials and other cohomological obstructions for group actions, Real and complex singularities (Contemp. Math.), Volume 354, Amer. Math. Soc., 2004, pp. 69-93 | MR | Zbl
[8] On the structure of Thom polynomials of singularities (Preprint, September 2005)
[9] Schubert varieties and degeneracy loci, Lecture Notes in Mathematics, 1689, Springer-Verlag, Berlin, 1998 (Appendix J by the authors in collaboration with I. Ciocan-Fontanine) | MR | Zbl
[10] Symmetry properties of singularities of -functions, Math. Ann., Volume 238 (1979), pp. 147-156 | DOI | MR | Zbl
[11]
(Letter to the author, dated July 4, 2006)[12] Characteristic classes of singularity theory, The Arnold-Gelfand mathematical seminars: Geometry and singularity theory (1997), pp. 325-340 | MR | Zbl
[13] Classifying spaces of singularities and Thom polynomials, New developments in singularity theory, NATO Sci. Ser. II Math. Phys. Chem., Volume 21, Kluwer Acad. Publ., Dordrecht, 2001, pp. 117-134 | MR | Zbl
[14] The enumerative theory of singularities, Real and complex singularities, Oslo 1976 (P. Holm ed.) (1978), pp. 297-396 | MR | Zbl
[15] On Giambelli’s theorem for complete correlations, Acta Math., Volume 162 (1989), pp. 143-199 | DOI | Zbl
[16] Symmetric functions and combinatorial operators on polynomials, CBMS/AMS Lectures Notes, Volume 99, Providence, 2003 | MR | Zbl
[17] Formulaire raisonné de fonctions symétriques, Université Paris 7, 1985
[18] Addition of : application to arithmetic, Sém. Lothar. Combin., Volume 52 (2004/05), pp. Art. B52a, 9pp. (electronic) | MR | Zbl
[19] Symmetric functions and Hall-Littlewood polynomials, Oxford Math. Monographs, Amer. Math. Soc., 1995 (2nd ed.)
[20] On Thom polynomials for via Schur functions Preprint, IMPAN Warszawa 2006 (670), to appear in Serdica Math.J.
[21] Simple singularities of maps, Proc. Liverpool Singularities I, Springer Lecture Notes in Math., Volume 192, Springer, 1971, pp. 286-307 | MR | Zbl
[22] Thom polynomials and Schur functions I (math.AG/0509234)
[23] Thom polynomials and Schur functions: the singularities (in preparation)
[24] Thom polynomials and Schur functions: towards the singularities Preprint MPIM Bonn 2006 (139)
[25] Note on elimination theory, Indagationes Math., Volume 49 (1987), pp. 215-221 | DOI | MR | Zbl
[26] Enumerative geometry of degeneracy loci, Ann. Sci. École Norm. Sup., Volume 21 (1988), pp. 413-454 | Numdam | MR | Zbl
[27] Algebro-geometric applications of Schur - and -polynomials, Topics in invariant theory, Séminaire d’Algèbre Dubreil-Malliavin 1989-1990 (M.-P. Malliavin ed.), Springer Lecture Notes in Math., Volume 1478, Springer, 1991, pp. 130-191 | Zbl
[28] Symmetric polynomials and divided differences in formulas of intersection theory, Parameter spaces (P. Pragacz ed.), Volume 36, Banach Center Publications, 1996, pp. 125-177 | MR | Zbl
[29] On a Jacobi-Trudi identity for supersymmetric polynomials, Adv. in Math., Volume 95 (1992), pp. 8-17 | DOI | MR | Zbl
[30] Positivity of Schur function expansions of Thom polynomials Preprint, math.AG/0605308 and MPIM Bonn 2006 (60), to appear in Fund. Math.
[31] Thom polynomials, symmetries and incidences of singularities, Inv. Math., Volume 143 (2001), pp. 499-521 | DOI | MR | Zbl
[32] Generalized Pontrjagin-Thom construction for maps with singularities, Topology, Volume 37 (1998), pp. 1177-1191 | DOI | MR | Zbl
[33] Allgemeine Anzahlfunctionen für Kegelschnitte, Flächen und Raüme zweiten Grades in Dimensionen, Math. Ann., Volume 45 (1894), pp. 153-206 | DOI | MR
[34] A characterization of supersymmetric polynomials, J. Algebra, Volume 95 (1985), pp. 439-444 | DOI | MR | Zbl
[35] Les singularités des applications différentiables, Ann. Inst. Fourier, Volume 6 (1955–56), pp. 43-87 | DOI | Numdam | MR | Zbl
[36] A second note on symmetry of singularities, Bull. London Math. Soc., Volume 12 (1980), pp. 347-354 | DOI | MR | Zbl
Cité par Sources :