Small divisors and large multipliers
[Petits diviseurs et grands multiplicateurs]
Annales de l'Institut Fourier, Tome 57 (2007) no. 2, pp. 603-628.

Nous étudions des germes de champs de vecteurs holomorphes singuliers à l’origine de n dont la partie linéaire est 1-résonante et qui admettent une forme normale polynomiale. En général, bien que le difféomorphisme formel normalisant soit divergent à l’origine, il existe néanmoins des difféomorphismes holomorphes dans des “domaines sectoriels” qui les transforment en leur forme normale. Dans cet article, nous étudions la relation qui existe entre le phénomène de petits diviseurs et le caractère Gevrey de ces difféomorphismes sectoriels normalisants. Nous montrons que l’ordre Gevrey de ce dernier est relié au type diophantien des petits diviseurs.

We study germs of singular holomorphic vector fields at the origin of n of which the linear part is 1-resonant and which have a polynomial normal form. The formal normalizing diffeomorphism is usually divergent at the origin but there exists holomorphic diffeomorphisms in some “sectorial domains” which transform these vector fields into their normal form. In this article, we study the interplay between the small divisors phenomenon and the Gevrey character of the sectorial normalizing diffeomorphisms. We show that the Gevrey order of the latter is linked to the diophantine type of the small divisors.

DOI : 10.5802/aif.2269
Classification : 34M30, 34M40, 32S65, 37F75, 37J40, 37J30, 70K45, 70K30
Keywords: Holomorphic dynamics, small divisors, normal forms, Gevrey functions, divergent series
Mot clés : dynamique holomorphe, petits diviseurs, forme normale, fonction Gevrey, série divergente

Braaksma, Boele 1 ; Stolovitch, Laurent 2

1 University of Groningen Department of Mathematics P.O. Box 800 9700 AV Groningen (The Netherlands)
2 CNRS UMR 5580 Université Paul Sabatier MIG, Laboratoire de Mathématiques Emile Picard 31062 Toulouse cedex 9 (France)
@article{AIF_2007__57_2_603_0,
     author = {Braaksma, Boele and Stolovitch, Laurent},
     title = {Small divisors and large multipliers},
     journal = {Annales de l'Institut Fourier},
     pages = {603--628},
     publisher = {Association des Annales de l{\textquoteright}institut Fourier},
     volume = {57},
     number = {2},
     year = {2007},
     doi = {10.5802/aif.2269},
     mrnumber = {2310952},
     zbl = {1138.37028},
     language = {en},
     url = {https://aif.centre-mersenne.org/articles/10.5802/aif.2269/}
}
TY  - JOUR
AU  - Braaksma, Boele
AU  - Stolovitch, Laurent
TI  - Small divisors and large multipliers
JO  - Annales de l'Institut Fourier
PY  - 2007
SP  - 603
EP  - 628
VL  - 57
IS  - 2
PB  - Association des Annales de l’institut Fourier
UR  - https://aif.centre-mersenne.org/articles/10.5802/aif.2269/
DO  - 10.5802/aif.2269
LA  - en
ID  - AIF_2007__57_2_603_0
ER  - 
%0 Journal Article
%A Braaksma, Boele
%A Stolovitch, Laurent
%T Small divisors and large multipliers
%J Annales de l'Institut Fourier
%D 2007
%P 603-628
%V 57
%N 2
%I Association des Annales de l’institut Fourier
%U https://aif.centre-mersenne.org/articles/10.5802/aif.2269/
%R 10.5802/aif.2269
%G en
%F AIF_2007__57_2_603_0
Braaksma, Boele; Stolovitch, Laurent. Small divisors and large multipliers. Annales de l'Institut Fourier, Tome 57 (2007) no. 2, pp. 603-628. doi : 10.5802/aif.2269. https://aif.centre-mersenne.org/articles/10.5802/aif.2269/

[1] Arnolʼd, V. Chapitres supplémentaires de la théorie des équations différentielles ordinaires, Mir, Moscow, 1980 (Translated from the Russian by Djilali Embarek, 324 pages) | MR | Zbl

[2] Balser, Werner Formal power series and linear systems of meromorphic ordinary differential equations, Universitext, Springer-Verlag, New York, 2000 | MR | Zbl

[3] Braaksma, Boele L. J. Transseries for a class of nonlinear difference equations, J. Differ. Equations Appl., Volume 7 (2001) no. 5, pp. 717-750 | DOI | MR | Zbl

[4] Brjuno, A. D. Analytic form of differential equations, Trans. Mosc. Math. Soc., Volume 25 (1971), p. 131-288; ibid. 26 (1972), p. 199–239 | MR | Zbl

[5] Canille Martins, Júlio Cesar Holomorphic flows in C 3 ,0 with resonances, Trans. Amer. Math. Soc., Volume 329 (1992) no. 2, pp. 825-837 | DOI | MR | Zbl

[6] Costin, Ovidiu On Borel summation and Stokes phenomena for rank-1 nonlinear systems of ordinary differential equations, Duke Math. J., Volume 93 (1998) no. 2, pp. 289-344 | DOI | MR | Zbl

[7] Écalle, J. Singularités non abordables par la géométrie, Ann. Inst. Fourier, Grenoble, Volume 42 (1992) no. 1-2, pp. 73-164 | DOI | Numdam | MR | Zbl

[8] Gérard, R.; Sibuya, Y. Étude de certains systèmes de Pfaff avec singularités, Lecture Note in Math., Springer-Verlag, Volume 712 (1979), pp. 131-288 | MR | Zbl

[9] Ichikawa, Fumio Finitely determined singularities of formal vector fields, Invent. Math., Volume 66 (1982) no. 2, pp. 199-214 | DOI | MR | Zbl

[10] Iooss, G.; Lombardi, E. Polynomial normal forms with exponentially small remainder for analytic vector fields, J. Differential Equations, Volume 212 (2005) no. 1, pp. 1-61 | DOI | MR | Zbl

[11] Lochak, P. Simultaneous Diophantine approximation in classical pertubation theory: why and what for?, Progress in nonlinear science, Vol. 1 (Nizhny Novgorod, 2001), RAS, Inst. Appl. Phys., Nizhniĭ Novgorod, 2002, pp. 116-138 | MR

[12] Malgrange, B. Travaux d’Écalle et de Martinet-Ramis sur les systèmes dynamiques, Bourbaki Seminar, Vol. 1981/1982 (Astérisque), Volume 92, Soc. Math. France, Paris, 1982, pp. 59-73 | Numdam | MR | Zbl

[13] Malgrange, Bernard Sommation des séries divergentes, Exposition. Math., Volume 13 (1995) no. 2-3, pp. 163-222 | MR | Zbl

[14] Martinet, Jean Normalisation des champs de vecteurs holomorphes (d’après A.-D. Brjuno), Bourbaki Seminar, Vol. 1980/81 (Lecture Notes in Math.), Volume 901, Springer, Berlin, 1981, pp. 55-70 | Numdam | MR | Zbl

[15] Martinet, Jean; Ramis, Jean-Pierre Problèmes de modules pour des équations différentielles non linéaires du premier ordre, Inst. Hautes Études Sci. Publ. Math. (1982) no. 55, pp. 63-164 | DOI | Numdam | MR | Zbl

[16] Martinet, Jean; Ramis, Jean-Pierre Classification analytique des équations différentielles non linéaires résonnantes du premier ordre, Ann. Sci. École Norm. Sup. (4), Volume 16 (1983) no. 4, p. 571-621 (1984) | Numdam | MR | Zbl

[17] Poincaré, H. Les méthodes nouvelles de la mécanique céleste. Tome II, Librairie Scientifique et Technique Albert Blanchard, Paris, 1987 (Méthodes de MM. Newcomb, Gyldén, Lindstedt et Bohlin. [The methods of Newcomb, Gyldén, Lindstedt and Bohlin], Reprint of the 1893 original, Bibliothèque Scientifique Albert Blanchard. [Albert Blanchard Scientific Library])

[18] Ramis, J.-P. Les séries k-sommables et leurs applications, Complex analysis, microlocal calculus and relativistic quantum theory (Proc. Internat. Colloq., Centre Phys., Les Houches, 1979) (Lecture Notes in Phys.), Volume 126, Springer, Berlin, 1980, pp. 178-199 | MR

[19] Ramis, J.-P.; Stolovitch, L. Divergent series and holomorphic dynamical systems (1993) (Unpublished lecture notes)

[20] Ramis, Jean-Pierre Séries divergentes et théories asymptotiques, Panoramas et Synthèses (Suppl. au bulletin de la SMF), Volume 121, Société Mathématique de France, 1993, pp. 74 | MR | Zbl

[21] Schmidt, Wolfgang M. Two questions in Diophantine approximation, Monatsh. Math., Volume 82 (1976) no. 3, pp. 237-245 | DOI | MR | Zbl

[22] Sibuya, Yasutaka Uniform multisummability and convergence of a power series, Funkcial. Ekvac., Volume 47 (2004) no. 1, pp. 119-127 | DOI | MR | Zbl

[23] Simó, Carles Averaging under fast quasiperiodic forcing, Hamiltonian mechanics (Toruń, 1993) (NATO Adv. Sci. Inst. Ser. B Phys.), Volume 331, Plenum, New York, 1994, pp. 13-34 | MR

[24] Stolovitch, Laurent Classification analytique de champs de vecteurs 1-résonnants de (C n ,0), Asymptotic Anal., Volume 12 (1996) no. 2, pp. 91-143 | MR | Zbl

[25] Tougeron, J.-Cl. Sur les ensembles semi-analytiques avec conditions Gevrey au bord, Ann. Sci. École Norm. Sup. (4), Volume 27 (1994) no. 2, pp. 173-208 | Numdam | MR | Zbl

[26] Voronin, S. M. Analytic classification of germs of conformal mappings (C,0)(C,0) with identity linear part, Funktsional. Anal. i Prilozhen., Volume 15 (1981) no. 1, pp. 1-17 (Russian); English transl.: Funct. Anal. Appl. 15 (18=981), p. 1–13 | DOI | MR | Zbl

Cité par Sources :