[Formules de déterminants pour quel\-ques problèmes de pavage et application aux modèles de boucles compactes]
Quelques formules de déterminants sont données pour le dénombrement des pavages dans différents domaines, en relation avec les énumérations de matrices à signes alternés et de boucles compactes.
We present a number of determinant formulae for the number of tilings of various domains in relation with Alternating Sign Matrix and Fully Packed Loop enumeration.
Keywords: Tilings, alternating sign matrices, fully packed loops
Mot clés : pavages, matrices à signes alternés, boucles compactes
Di Francesco, Philippe 1 ; Zinn-Justin, Paul  ; Zuber, Jean-Bernard 
@article{AIF_2005__55_6_2025_0, author = {Di Francesco, Philippe and Zinn-Justin, Paul and Zuber, Jean-Bernard}, title = {Determinant formulae for some tiling problems and application to fully packed loops}, journal = {Annales de l'Institut Fourier}, pages = {2025--2050}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, volume = {55}, number = {6}, year = {2005}, doi = {10.5802/aif.2150}, zbl = {1075.05007}, mrnumber = {2187944}, language = {en}, url = {https://aif.centre-mersenne.org/articles/10.5802/aif.2150/} }
TY - JOUR AU - Di Francesco, Philippe AU - Zinn-Justin, Paul AU - Zuber, Jean-Bernard TI - Determinant formulae for some tiling problems and application to fully packed loops JO - Annales de l'Institut Fourier PY - 2005 SP - 2025 EP - 2050 VL - 55 IS - 6 PB - Association des Annales de l’institut Fourier UR - https://aif.centre-mersenne.org/articles/10.5802/aif.2150/ DO - 10.5802/aif.2150 LA - en ID - AIF_2005__55_6_2025_0 ER -
%0 Journal Article %A Di Francesco, Philippe %A Zinn-Justin, Paul %A Zuber, Jean-Bernard %T Determinant formulae for some tiling problems and application to fully packed loops %J Annales de l'Institut Fourier %D 2005 %P 2025-2050 %V 55 %N 6 %I Association des Annales de l’institut Fourier %U https://aif.centre-mersenne.org/articles/10.5802/aif.2150/ %R 10.5802/aif.2150 %G en %F AIF_2005__55_6_2025_0
Di Francesco, Philippe; Zinn-Justin, Paul; Zuber, Jean-Bernard. Determinant formulae for some tiling problems and application to fully packed loops. Annales de l'Institut Fourier, Tome 55 (2005) no. 6, pp. 2025-2050. doi : 10.5802/aif.2150. https://aif.centre-mersenne.org/articles/10.5802/aif.2150/
[1] Virasoro action on Schur function expansions, skew Young tableaux and random walks, Comm. Pure Appl. Math., Volume 58 (2005), pp. 362-408 | DOI | MR | Zbl
[2] The quantum symmetric XXZ chain at , alternating sign matrices and plane partitions, J. Phys. A, Volume 34 (2001), p. L265-L270 | DOI | MR | Zbl
[3] Proofs and confirmations. The story of the alternating sign matrix conjecture, Cambridge University Press, 1999 | MR | Zbl
[4] Proof of two conjectures of Zuber on fully packed loop configurations, J. Combin. Theory Ser. A, Volume 108 (2004), pp. 123-146 | DOI | MR | Zbl
[5] Enumeration of lozenge tilings of hexagons with cut-off corners, J. Combin. Theory Ser. A, Volume 100 (2002), pp. 201-231 | DOI | MR | Zbl
[6] Enumeration of lozenge tilings of hexagons with a central triangular hole, J. Combin. Theory Ser. A, Volume 95 (2001), pp. 251-334 | DOI | MR | Zbl
[7] A bijection between classes of fully packed loops and plane partitions, Electron. J. Combin., Volume 11 (2004) no. 1 | MR | Zbl
[8] On FPL configurations with four sets of nested arches, JSTAT (2004) | Zbl
[9] Loops, matchings and alternating-sign matrices (math.CO/0211285), http://arxiv.org/abs/math.CO/0211285 | Zbl
[10] On the homology of free 2-step nilpotent Lie algebras, J. Algebra, Volume 254 (2002), pp. 213-225 | DOI | MR | Zbl
[11] Advanced determinant calculus, Séminaire Lotharingien Combin., 42, 1999 | MR | Zbl
[12] On the vector representations of induced matroids, Bull. London Math. Soc., Volume 5 (1973), pp. 85-90 | DOI | MR | Zbl
[13] Osculating random walks on cylinders, pp. 259-264 in Discrete random walks, DRW'03, Discrete Mathematics and Computer Science Proceedings AC, 2003 | MR | Zbl
[14] Exact expressions for correlations in the ground state of the dense loop model, JSTAT (2004) | Zbl
[15] On-Line Encyclopedia of Integer Sequences (, http://www.research.att.com/~njas/sequences/Seis.html)
[16] Critical Potts model and temperley-Lieb stochastic processes, Teor. Mat. Fiz., Volume 142 (2005), pp. 284-292
[17] Combinatorial nature of ground state vector of O(1) loop model, Theor. Math. Phys., Volume 138 (2004), pp. 333-337 | DOI | MR | Zbl
[18] A large dihedral symmetry of the set of alternating-sign matrices, Electron. J. Combin., Volume 7 (2000) | MR | Zbl
Cité par Sources :