Rational points on a subanalytic surface
[Points rationnels d'une surface sous-analytique]
Annales de l'Institut Fourier, Tome 55 (2005) no. 5, pp. 1501-1516.

Soit X n une surface sous-analytique compacte. Cet article démontre qu’en un sens convenable, il y a très peu de points rationnels de X qui ne se trouvent pas sur une courbe semi-algébrique connexe contenue dans X.

Let X n be a compact subanalytic surface. This paper shows that, in a suitable sense, there are very few rational points of X that do not lie on some connected semialgebraic curve contained in X.

DOI : 10.5802/aif.2131
Classification : 11D99, 11J99
Keywords: Subanalytic set, rational point
Mot clés : ensemble sous-analytique, point rationnel

Pila, Jonathan 1

1 McGill University, department of mathematics and statistics, Burnside Hall, 805 Sherbrooke Street West, Montreal, Quebec, H3A 2K6 (Canada), University of Oxford, mathematical institute, 24-29 St Giles, Oxford OX1 3LB (Grande-Bretagne)
@article{AIF_2005__55_5_1501_0,
     author = {Pila, Jonathan},
     title = {Rational points on a subanalytic surface},
     journal = {Annales de l'Institut Fourier},
     pages = {1501--1516},
     publisher = {Association des Annales de l{\textquoteright}institut Fourier},
     volume = {55},
     number = {5},
     year = {2005},
     doi = {10.5802/aif.2131},
     zbl = {02210717},
     mrnumber = {2172272},
     language = {en},
     url = {https://aif.centre-mersenne.org/articles/10.5802/aif.2131/}
}
TY  - JOUR
AU  - Pila, Jonathan
TI  - Rational points on a subanalytic surface
JO  - Annales de l'Institut Fourier
PY  - 2005
SP  - 1501
EP  - 1516
VL  - 55
IS  - 5
PB  - Association des Annales de l’institut Fourier
UR  - https://aif.centre-mersenne.org/articles/10.5802/aif.2131/
DO  - 10.5802/aif.2131
LA  - en
ID  - AIF_2005__55_5_1501_0
ER  - 
%0 Journal Article
%A Pila, Jonathan
%T Rational points on a subanalytic surface
%J Annales de l'Institut Fourier
%D 2005
%P 1501-1516
%V 55
%N 5
%I Association des Annales de l’institut Fourier
%U https://aif.centre-mersenne.org/articles/10.5802/aif.2131/
%R 10.5802/aif.2131
%G en
%F AIF_2005__55_5_1501_0
Pila, Jonathan. Rational points on a subanalytic surface. Annales de l'Institut Fourier, Tome 55 (2005) no. 5, pp. 1501-1516. doi : 10.5802/aif.2131. https://aif.centre-mersenne.org/articles/10.5802/aif.2131/

[1] E. Bierstone; P.D. Milman Semianalytic and subanalytic sets, Pub. Math. I.H.E.S, Volume 67 (1988), pp. 5-42 | Numdam | MR | Zbl

[2] E. Bombieri email, 9 March (2003)

[3] E. Bombieri; J. Pila The number of integral points on arcs and ovals, Duke Math. J., Volume 59 (1989), pp. 337-357 | DOI | MR | Zbl

[4] D. R. Heath-Brown The density of rational points on curves and surfaces, Ann. Math., Volume 155 (2002), pp. 553-595 | DOI | MR | Zbl

[5] M. Hindry; J. H. Silverman Diophantine geometry: an introduction, Graduate Texts in Mathematics, 201, Springer, New York, 2000 | MR | Zbl

[6] V. Jarnik Über die Gitterpunkte auf konvexen Curven, Math. Z., Volume 24 (1926), pp. 500-518 | DOI | JFM | MR

[7] S. Lang Number theory III: diophantine geometry, Encyclopedia of Mathematical Sciences, 60, Springer, Berlin, 1991 | MR | Zbl

[8] J. Pila Geometric postulation of a smooth function and the number of rational points, Duke Math. J., Volume 63 (1991), pp. 449-463 | MR | Zbl

[9] J. Pila Density of integer points on plane algebraic curves, International Mathematics Research Notices (1996), pp. 903-912 | MR | Zbl

[10] J. Pila Integer points on the dilation of a subanalytic surface, Quart. J. Math., Volume 55 (2004), pp. 207-223 | DOI | MR | Zbl

[11] J. Pila Note on the rational points of a pfaff curve (submitted)

[12] W. M. Schmidt Integer points on curves and surfaces, Monatsh. Math., Volume 99 (1985), pp. 45-72 | DOI | MR | Zbl

[13] H. P. F. Swinnerton-Dyer The number of lattice points on a convex curve, J. Number Theory, Volume 6 (1974), pp. 128-135 | DOI | MR | Zbl

[14] A. Wilkie Diophantine properties of sets definable in o-minimal structures, J. Symb. Logic, Volume 69 (2004), pp. 851-861 | DOI | MR | Zbl

Cité par Sources :