Zygmund's program: some partial solutions
[Programme de Zygmund : quelques solutions partielles]
Annales de l'Institut Fourier, Tome 55 (2005) no. 5, pp. 1439-1453.

Nous proposons un critère simple pour décider si la fonction maximale associée à une base d’intervalles multidimensionnels, invariante par translation, admet une estimation du type (1,1). Cela nous permet de compléter le programme de Zygmund décrivant les bases d’intervalles multidimensionnels invariantes par translation dans le cas particulier des produits de deux intervalles cubiques. Nous proposons aussi une conjecture qui précise le programme de Zygmund.

We present a simple criterion to decide whether the maximal function associated with a translation invariant basis of multidimensional intervals satisfies a weak type (1,1) estimate. This allows us to complete Zygmund’s program of the description of the translation invariant bases of multidimensional intervals in the particular case of products of two cubic intervals. As a conjecture, we suggest a more precise version of Zygmund’s program.

DOI : 10.5802/aif.2129
Classification : 42B25
Keywords: covering lemmas, maximal functions
Mot clés : lemmes de recouvrement, fonctions maximales

Stokolos, Alexander 1

1 DePaul University, department of mathematical sciences, Chicago, IL 60614 (USA)
@article{AIF_2005__55_5_1439_0,
     author = {Stokolos, Alexander},
     title = {Zygmund's program: some partial solutions},
     journal = {Annales de l'Institut Fourier},
     pages = {1439--1453},
     publisher = {Association des Annales de l{\textquoteright}institut Fourier},
     volume = {55},
     number = {5},
     year = {2005},
     doi = {10.5802/aif.2129},
     zbl = {1080.42019},
     mrnumber = {2172270},
     language = {en},
     url = {https://aif.centre-mersenne.org/articles/10.5802/aif.2129/}
}
TY  - JOUR
AU  - Stokolos, Alexander
TI  - Zygmund's program: some partial solutions
JO  - Annales de l'Institut Fourier
PY  - 2005
SP  - 1439
EP  - 1453
VL  - 55
IS  - 5
PB  - Association des Annales de l’institut Fourier
UR  - https://aif.centre-mersenne.org/articles/10.5802/aif.2129/
DO  - 10.5802/aif.2129
LA  - en
ID  - AIF_2005__55_5_1439_0
ER  - 
%0 Journal Article
%A Stokolos, Alexander
%T Zygmund's program: some partial solutions
%J Annales de l'Institut Fourier
%D 2005
%P 1439-1453
%V 55
%N 5
%I Association des Annales de l’institut Fourier
%U https://aif.centre-mersenne.org/articles/10.5802/aif.2129/
%R 10.5802/aif.2129
%G en
%F AIF_2005__55_5_1439_0
Stokolos, Alexander. Zygmund's program: some partial solutions. Annales de l'Institut Fourier, Tome 55 (2005) no. 5, pp. 1439-1453. doi : 10.5802/aif.2129. https://aif.centre-mersenne.org/articles/10.5802/aif.2129/

[1] A. M. Bruckner Differentiation of integrals, 78, 1971 | MR | Zbl

[2] C. Carathéodory Vorlesungen über reelle Funktionen, New York, 1968 | JFM | MR

[3] A. Córdoba Maximal functions, covering lemmas and Fourier multipliers, Harmonic Analysis in Euclidean Spaces, Part 1 (Proc. Sympos. Pure Math.), Volume 35 (1979), pp. 29-49 | Zbl

[4] A. Córdoba; R. Fefferman A geometric proof of the strong maximal theorem, Ann. of Math., Volume 102 (1975), pp. 95-100 | DOI | MR | Zbl

[5] R. Fefferman Covering lemmas, maximal functions and multiplier operators in Fourier analysis, Harmonic Analysis in Euclidean Spaces, Part 1 (Proc. Sympos. Pure Math.), Volume 35 (1979), pp. 51-60 | Zbl

[6] R. Fefferman Strong differentiation with respect to measures, Amer. J. Math., Volume 103 (1981), pp. 33-40 | DOI | MR | Zbl

[7] R. Fefferman Some weighted norm inequalities for Córdoba's maximal function, Amer. J. Math., Volume 106 (1984), pp. 1261-1264 | DOI | MR | Zbl

[8] R. Fefferman; J. Pipher Multiparameter operators and sharp weighted inequalities, Amer. J. Math., Volume 119 (1997), pp. 337-369 | DOI | MR | Zbl

[9] M. de Guzmán Differentiation of Integrals in R n , Lecture Notes in Math., 481, Springer, 1975 | Zbl

[10] M. de Guzmán Real Variable Methods in Fourier Analysis, North-Holland Math. Stud., 46, North-Holland, Amsterdam, 1981 | Zbl

[11] C. A. Hayes; C. Y. Pauk Derivation and Martingales, Springer, Berlin, 1970 | Zbl

[12] P. A. Hagelstein (private communication)

[13] S. Saks Theory of the Integral (1939) (Warszawa) | JFM | Zbl

[14] S. Saks On the strong derivatives of functions of intervals, Fund. Math., Volume 25 (1935), pp. 235-252 | EuDML | JFM | Zbl

[15] F. Soria Examples and counterexamples to a conjecture in the theory of differentiation of integrals, Ann. of Math (1986), pp. 1-9 | MR | Zbl

[16] E. M. Stein Singular Integrals and Differentiability Properties of Functions, Princeton Univ. Press, Princeton, NJ, 1970 | MR | Zbl

[17] E. M. Stein Harmonic Analysis: Real-Variable Methods, Orthogonality, and Oscillatory Integrals, with the assistance of T. S. Murphy, Princeton Univ. Press, Princeton, NJ, 1993 | MR | Zbl

[18] E. M. Stein; G. Weiss Introduction to Fourier Analysis on Euclidean Spaces, Princeton Univ. Press, Princeton, NJ, 1971 | MR | Zbl

[19] E. M. Stein; N. J. Weiss On the convergence of Poisson integrals, Trans. Amer. Math. Soc., Volume 140 (1969), pp. 35-54 | DOI | MR | Zbl

[20] A. M. Stokolos On strong differentiation of integrals of functions from L φ (L), Studia Math., Volume 88 (1988), pp. 103-120 | EuDML | MR | Zbl

[21] A. Zygmund Trigonometric Series, 2, Cambridge Univ. Press, 1958 | Zbl

[22] A. Zygmund A note on the differentiability of multiple integrals, Colloq. Math., Volume 16 (1967), pp. 199-204 | EuDML | MR | Zbl

Cité par Sources :