[Résolubilité au voisingage de l'ensemble caractéristique pour une classe de champs de vecteurs planaires de type infini]
On étudie la résolubilité des équations associées à un champ de vecteurs complexe dans à coefficients de classe ou . On suppose que est partout elliptique, sauf le long d’une courbe simple et fermée . Sur , on suppose que est de type infini et que s’annule à un ordre constant. Les équations considerées sont de la forme , où satisfait des conditions de compatibilité. On prouve, en particulier, que lorsque l’ordre d’annulation de est , l’équation est résoluble dans la catégorie mais pas dans la catégorie .
We study the solvability of equations associated with a complex vector field in with or coefficients. We assume that is elliptic everywhere except on a simple and closed curve . We assume that, on , is of infinite type and that vanishes to a constant order. The equations considered are of the form , with satisfying compatibility conditions. We prove, in particular, that when the order of vanishing of is , the equation is solvable in the category but not in the category.
Keywords: characteristic set, complex vector field, infinite type, solvability
Mot clés : ensemble caractéristique, champ de vecteur complexe, type infini, résolubilité
P. Bergamasco, Alberto 1 ; Meziani, Abdelhamid 
@article{AIF_2005__55_1_77_0, author = {P. Bergamasco, Alberto and Meziani, Abdelhamid}, title = {Solvability near the characteristic set for a class of planar vector fields of infinite type}, journal = {Annales de l'Institut Fourier}, pages = {77--112}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, volume = {55}, number = {1}, year = {2005}, doi = {10.5802/aif.2090}, zbl = {1063.35051}, mrnumber = {2141289}, language = {en}, url = {https://aif.centre-mersenne.org/articles/10.5802/aif.2090/} }
TY - JOUR AU - P. Bergamasco, Alberto AU - Meziani, Abdelhamid TI - Solvability near the characteristic set for a class of planar vector fields of infinite type JO - Annales de l'Institut Fourier PY - 2005 SP - 77 EP - 112 VL - 55 IS - 1 PB - Association des Annales de l’institut Fourier UR - https://aif.centre-mersenne.org/articles/10.5802/aif.2090/ DO - 10.5802/aif.2090 LA - en ID - AIF_2005__55_1_77_0 ER -
%0 Journal Article %A P. Bergamasco, Alberto %A Meziani, Abdelhamid %T Solvability near the characteristic set for a class of planar vector fields of infinite type %J Annales de l'Institut Fourier %D 2005 %P 77-112 %V 55 %N 1 %I Association des Annales de l’institut Fourier %U https://aif.centre-mersenne.org/articles/10.5802/aif.2090/ %R 10.5802/aif.2090 %G en %F AIF_2005__55_1_77_0
P. Bergamasco, Alberto; Meziani, Abdelhamid. Solvability near the characteristic set for a class of planar vector fields of infinite type. Annales de l'Institut Fourier, Tome 55 (2005) no. 1, pp. 77-112. doi : 10.5802/aif.2090. https://aif.centre-mersenne.org/articles/10.5802/aif.2090/
[B1] Perturbation of globally hypoelliptic operators, J. Differential Equations, Volume 114 (1994), pp. 513-526 | DOI | MR | Zbl
[B2] Remarks about global analytic hypoellipticity, Trans. Amer. Math. Soc., Volume 351 (1999), pp. 4113-4126 | DOI | MR | Zbl
[BCH] Global properties of a class of vector fields in the plane, J. Diff. Equations, Volume 74 (1988), pp. 179-199 | DOI | MR | Zbl
[BCM] Globally hypoelliptic systems of vector fields, J. Funct. Analysis, Volume 114 (1993), pp. 267-285 | DOI | MR | Zbl
[BCP] Global solvability for a class of complex vector fields on the two-torus, Comm. Partial Differential Equations, Volume 29 (2004), pp. 785-819 | DOI | MR | Zbl
[BgM] Semiglobal solvability of a class of planar vector fields of infinite type, Mat. Contemp., Volume 18 (2000), pp. 31-42 | MR | Zbl
[BhM1] On rotationally invariant vector fields in the plane, Manuscripta Math., Volume 89 (1996), pp. 355-371 | DOI | MR | Zbl
[BhM2] Global properties of a class of planar vector fields of infinite type, Comm. Partial Differential Equations, Volume 22 (1997), pp. 99-142 | MR | Zbl
[BHS] A generalized similarity principle for complex vector fields and applications, Trans. Amer. Math. Soc., Volume 353 (2001), pp. 1661-1675 | DOI | MR | Zbl
[BT] A property of functions and distributions annihilated by locally integrable system of vector fields, Ann. of Math., Volume 113 (1981), pp. 341-421 | MR | Zbl
[CG] Normalization of complex-valued planar vector fields which degenerate along a real curve, Adv. Math., Volume 184 (2004), pp. 89-118 | DOI | MR | Zbl
[CH] Global analytic hypoellipticity for a class of degenerate elliptic operators on the torus, Math. Res. Letters, Volume 1 (1994), pp. 501-510 | MR | Zbl
[CT] Homology and cohomology in hypoanalytic structures of the hypersurface type, J. Geo. Analysis, Volume 1 (1991), pp. 39-70 | MR | Zbl
[G] Hypoelliptic vector fields and continued fractions, Proc. Amer. Math. Soc., Volume 31 (1972), pp. 115-118 | DOI | MR | Zbl
[GPY] Global properties in spaces of generalized functions on the torus for second-order differential operators with variable coefficients, Rend. Sem. Mat. Univ. Pol. Torino, Volume 51 (1993), pp. 145-172 | MR | Zbl
[H] The analysis of linear partial differential operators IV, New York, 1984 | MR | Zbl
[M1] On the similarity principle for planar vector fields: applications to second order pde, J. Differential Equations, Volume 157 (1999), pp. 1-19 | DOI | MR | Zbl
[M2] On real analytic planar vector fields near the characteristic set, Contemp. Math., Volume 251 (2000), pp. 429-438 | MR | Zbl
[M3] On planar elliptic structures with infinite type degeneracy, J. Funct. Anal., Volume 179 (2001), pp. 333-373 | DOI | MR | Zbl
[M4] Elliptic planar vector fields with degeneracies (Trans. Amer. Math. Soc., to appear) | MR | Zbl
[NT] Solvability of a first order linear partial differential equation, Comm. Pure Applied Math., Volume 16 (1963), pp. 331-351 | DOI | MR | Zbl
[T1] Remarks about certain first-order linear PDE in two variables, Comm. Partial Differential Equations, Volume 5 (1980), pp. 381-425 | DOI | MR | Zbl
[T2] Hypo-analytic structures: local theory, Princeton University Press, 1992 | MR | Zbl
Cité par Sources :