Quantization and Morita equivalence for constant Dirac structures on tori
[Quantification et équivalence de Morita des structures de Dirac constantes sur les tores]
Annales de l'Institut Fourier, Tome 54 (2004) no. 5, pp. 1565-1580.

Nous définissons une quantification C * -algebrique des structures de Dirac constantes sur les tores, et nous démontrons que l’équivalence à O(n,n|) près des structures implique l’équivalence de Morita de leurs quantifications. Ce résultat complète et généralise un théorème de Rieffel et Schwarz, donné dans le cadre des structures de Poisson.

We define a C * -algebraic quantization of constant Dirac structures on tori and prove that O(n,n|)-equivalent structures have Morita equivalent quantizations. This completes and extends from the Poisson case a theorem of Rieffel and Schwarz.

DOI : 10.5802/aif.2059
Classification : 46L65, 81S10

Tang, Xiang  ; Weinstein, Alan 1

1 University of California, Department of Mathematics, Berkeley, CA 94720 (USA), University of California, Department of Mathematics Davis, CA 95616 (USA)
@article{AIF_2004__54_5_1565_0,
     author = {Tang, Xiang and Weinstein, Alan},
     title = {Quantization and {Morita} equivalence for constant {Dirac} structures on tori},
     journal = {Annales de l'Institut Fourier},
     pages = {1565--1580},
     publisher = {Association des Annales de l{\textquoteright}institut Fourier},
     volume = {54},
     number = {5},
     year = {2004},
     doi = {10.5802/aif.2059},
     zbl = {1068.46044},
     mrnumber = {2127858},
     language = {en},
     url = {https://aif.centre-mersenne.org/articles/10.5802/aif.2059/}
}
TY  - JOUR
AU  - Tang, Xiang
AU  - Weinstein, Alan
TI  - Quantization and Morita equivalence for constant Dirac structures on tori
JO  - Annales de l'Institut Fourier
PY  - 2004
SP  - 1565
EP  - 1580
VL  - 54
IS  - 5
PB  - Association des Annales de l’institut Fourier
UR  - https://aif.centre-mersenne.org/articles/10.5802/aif.2059/
DO  - 10.5802/aif.2059
LA  - en
ID  - AIF_2004__54_5_1565_0
ER  - 
%0 Journal Article
%A Tang, Xiang
%A Weinstein, Alan
%T Quantization and Morita equivalence for constant Dirac structures on tori
%J Annales de l'Institut Fourier
%D 2004
%P 1565-1580
%V 54
%N 5
%I Association des Annales de l’institut Fourier
%U https://aif.centre-mersenne.org/articles/10.5802/aif.2059/
%R 10.5802/aif.2059
%G en
%F AIF_2004__54_5_1565_0
Tang, Xiang; Weinstein, Alan. Quantization and Morita equivalence for constant Dirac structures on tori. Annales de l'Institut Fourier, Tome 54 (2004) no. 5, pp. 1565-1580. doi : 10.5802/aif.2059. https://aif.centre-mersenne.org/articles/10.5802/aif.2059/

[1] J. Block & E. Getzler, Quantization of foliations, Vol. 1, 2, World Scientific, 1992, p. 471-487 | Zbl

[2] A. Connes, Noncommutative Geometry, Academic Press, 1994 | MR | Zbl

[3] A. Connes, M.R. Douglas & A. Schwarz, Noncommutative Geometry and Matrix Theory: Compactification on Tori, J. High Energy Phys (1998) | MR | Zbl

[4] T.J. Courant, Dirac manifolds, Trans. A.M.S 319 (1990) p. 631-661 | MR | Zbl

[5] G. A. Elliott, On the K-theory of the C * algebras generated by a projective representation of a torsion-free discrete abelian group, Pitman, 1984, p. 157-184 | Zbl

[6] G.A. Elliott & H. Li, Morita equivalence of smooth noncommutative tori, e-print, math.OA/0311502 | Zbl

[7] H. Kajiura, Kronecker foliation, D1-branes and Morita equivalence of noncommutative two-tori, J. High Energy Phys 8 (2002) no.50 | MR | Zbl

[8] M. Kontsevich, Homological algebra of mirror symmetry., Vol. 1, 2, Birkhäuser, 1995, p. 120-139 | Zbl

[9] H. Li, Strong Morita equivalence of higher-dimensional noncommutative tori, e-print. To appear J. Reine Angew. Math., math.OA/0303123 | MR | Zbl

[10] F. Lizzi & R. Szabo, Noncommutative Geometry and String Duality, J. High Energy Phys., 1999

[11] P.S. Muhly, J.N. Renault & D.P. Williams, Equivalence and isomorphism for groupoid C * -algebras, J. Operator Theory 17 (1987) p. 3-22 | MR | Zbl

[12] S. Mukai, Duality between D(X) and D(X ^) with its application to Picard sheaves, Nagoya Math. J. 81 (1981) p. 153-175 | MR | Zbl

[13] M.A. Rieffel, Morita equivalence for C * -algebras and W * -algebras, J. Pure Appl. Algebra 5 (1974) p. 51-96 | MR | Zbl

[14] M.A. Rieffel, C * -algebras associated with irrational rotations, Pacific. J. Math. 93 (1981) p. 415-429 | MR | Zbl

[15] M.A. Rieffel, Projective modules over higher-dimensional non-commutative noncommutative tori, Canadian J. Math 40 (1988) p. 257-338 | MR | Zbl

[16] M.A. Rieffel, Deformation quantization of Heisenberg manifolds, Commun. Math. Phys 122 (1989) p. 531-562 | MR | Zbl

[17] M.A. Rieffel & A. Schwarz, Morita equivalence of multidimensional noncommutative tori, Int. J. Math 10 (1999) p. 289-299 | MR | Zbl

[18] A. Schwarz, Morita equivalence and duality, Lett. Math. Phys 50 (1999) p. 309-321 | MR | Zbl

[19] X. Tang, Deformation Quantization of Pseudo Symplectic (Poisson) Groupoids, e-print, math.QA/0405378 | Zbl

[20] A. Weinstein, Symplectic groupoids, geometric quantization, and irrational rotation algebras, MSRI Series, Springer, 1991, p. 281-290 | Zbl

[21] P. Xu, Noncommutative Poisson algebras, Amer. J. Math 116 (1994) p. 101-125 | MR | Zbl

Cité par Sources :