[Les algèbres d'endomorphismes des motifs associés aux formes modulaires paraboliques]
On étudie l’algèbre des endomorphismes du motif associé à une forme modulaire parabolique sans une multiplication complexe. On démontre que cette algèbre possède une sous-algèbre isomorphe à une algèbre de type produit croisé. La conjecture de Tate prédit que est l’algèbre des endomorphismes du motif. On étudie également la classe de Brauer de . Par exemple quand le nebentypus est réel et est un nombre premier qui ne divise pas le niveau, on démontre que le comportement local de en une place dominant est déterminé essentiellement par la valuation correspondante du -ième coefficient de Fourier de la forme.
We study the endomorphism algebra of the motive attached to a non-CM elliptic modular cusp form. We prove that this algebra has a sub-algebra isomorphic to a certain crossed product algebra . The Tate conjecture predicts that is the full endomorphism algebra of the motive. We also investigate the Brauer class of . For example we show that if the nebentypus is real and is a prime that does not divide the level, then the local behaviour of at a place lying above is essentially determined by the corresponding valuation of the -th Fourier coefficient of the form.
Keywords: endomorphism algebras, modular motives, Tate conjecture, filtered $(\phi ,N)$-modules, Newton polygons, symbols
Mot clés : algèbres d’endomorphismes, motifs modulaires, conjecture de Tate, $(\phi ,N)$- modules filtrés, polygones de Newton, symboles
Brown, Alexander F. 1 ; Ghate, Eknath P. 1
@article{AIF_2003__53_6_1615_0, author = {Brown, Alexander F. and Ghate, Eknath P.}, title = {Endomorphism algebras of motives attached to elliptic modular forms}, journal = {Annales de l'Institut Fourier}, pages = {1615--1676}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, volume = {53}, number = {6}, year = {2003}, doi = {10.5802/aif.1989}, zbl = {1050.11062}, mrnumber = {2038777}, language = {en}, url = {https://aif.centre-mersenne.org/articles/10.5802/aif.1989/} }
TY - JOUR AU - Brown, Alexander F. AU - Ghate, Eknath P. TI - Endomorphism algebras of motives attached to elliptic modular forms JO - Annales de l'Institut Fourier PY - 2003 SP - 1615 EP - 1676 VL - 53 IS - 6 PB - Association des Annales de l’institut Fourier UR - https://aif.centre-mersenne.org/articles/10.5802/aif.1989/ DO - 10.5802/aif.1989 LA - en ID - AIF_2003__53_6_1615_0 ER -
%0 Journal Article %A Brown, Alexander F. %A Ghate, Eknath P. %T Endomorphism algebras of motives attached to elliptic modular forms %J Annales de l'Institut Fourier %D 2003 %P 1615-1676 %V 53 %N 6 %I Association des Annales de l’institut Fourier %U https://aif.centre-mersenne.org/articles/10.5802/aif.1989/ %R 10.5802/aif.1989 %G en %F AIF_2003__53_6_1615_0
Brown, Alexander F.; Ghate, Eknath P. Endomorphism algebras of motives attached to elliptic modular forms. Annales de l'Institut Fourier, Tome 53 (2003) no. 6, pp. 1615-1676. doi : 10.5802/aif.1989. https://aif.centre-mersenne.org/articles/10.5802/aif.1989/
[AL78] Twists of newforms and pseudo-eigenvalues of W-operators, Invent. Math., Volume 48 (1978) no. 3, pp. 221-243 | DOI | MR | Zbl
[BR93] Motives for Hilbert modular forms, Invent. Math., Volume 114 (1993), pp. 55-87 | DOI | MR | Zbl
[Bre01] Lectures on p-adic Hodge theory, deformations and local Langlands, Advanced Course Lecture Notes, Volume 20
[Del69] Formes modulaires et représentations -adiques, Séminaire Bourbaki, 1968/1969 (Lecture Notes in Math.), Volume 179, exp. 355 (1971), pp. 139-172 | Numdam | Zbl
[Dem72] Lectures on p-divisible groups, Lecture Notes in Math., 302, Springer-Verlag, 1972 | MR | Zbl
[DR73] Les schémas de modules de courbes elliptique, Modular functions of one variable, II (Proc. Internat. Summer School, Univ. Antwerp, Antwerp, 1972) (Lecture Notes in Math.), Volume Vol. 349 (1973), pp. 143-316 | Zbl
[Fal83] Endlichkeitssätze für abelsche Varietäten über Zahlkörpen, Invent. Math., Volume 73 (1983), pp. 349-366 | DOI | MR | Zbl
[FM83] Geometric Galois representations, Ser. Number Theory, 1, International Press, 1995 | MR | Zbl
[Hid00] Modular Forms and Galois Cohomology, Cambridge University Press, Cambridge, 2000 | MR | Zbl
[Jan92] Motives, numerical equivalence, and semi-simplicity, Invent. Math., Volume 107 (1992) no. 3, pp. 447-452 | DOI | MR | Zbl
[Mom81] On the -adic representations attached to modular forms, J. Fac. Sci. Univ. Tokyo, Sect. IA Math., Volume 28 (1981), pp. 89-109 | MR | Zbl
[Quer98] La classe de Brauer de l'algèbre d'endomorphismes d'une variété abélienne modulaire, C. R. Acad. Sci. Paris, Sér. I Math., Volume 327 (1998) no. 3, pp. 227-230 | DOI | MR | Zbl
[Rib80] Twists of modular forms and endomorphisms of abelian varieties, Math. Ann., Volume 253 (1980) no. 1, pp. 43-62 | DOI | MR | Zbl
[Rib81] Endomorphism algebras of abelian varieties attached to newforms of weight 2, Seminar on Number Theory, Paris 1979-1980 (Progr. Math.), Volume 12 (1981), pp. 263-276 | Zbl
[Rib92] Abelian varieties over and modular forms, Proc. KAIST Math. Workshop (1992), pp. 53-79
[Sch90] Motives for modular forms, Invent. Math., Volume 100 (1990), pp. 419-430 | DOI | MR | Zbl
[Ser81] Quelques applications du théorème de densité de Chebotarev, Publ. Math. Inst. Hautes Études Sci., Volume 54 (1981), pp. 323-401 | Numdam | MR | Zbl
[Shi71] On elliptic curves with complex multiplication as factors of the Jacobians of modular function fields, Nagoya Math. J., Volume 43 (1971), pp. 199-208 | MR | Zbl
[Shi73] On the factors of the Jacobian variety of a modular function field, J. Math. Soc. Japan, Volume 25 (1973), pp. 523-544 | DOI | MR | Zbl
[Ste00] The first newform such that for all (2000) (Preprint)
[Vol01] Les représentations -adiques associées aux courbes elliptiques sur , J. reine angew. Math., Volume 535 (2001), pp. 65-101 | DOI | MR | Zbl
Cité par Sources :