Soit une variété de Seifert de groupe fondamental non virtuellement résoluble. Soit un feuilletage de dimension sur , muni d’une structure projective réelle transverse. On suppose que satisfait la propriété de relèvement des chemins, i.e., que l’espace des feuilles du relèvement de dans le revêtement universel de est séparé au sens de Hausdorff. On montre qu’à revêtements finis près, est soit une fibration projective, soit un feuilletage géodésique convexe, soit un feuilletage horocyclique projectif.
Let be a Seifert manifold with non-solvable fundamental group. Let be a one- dimensional foliation on , equipped with a transverse real projective structure. We assume moreover that satisfies the Homotopy Lifting Property, i.e., that the leaf space of the lifting of in the universal covering of satisfies the Hausdorff separation property. Then, up to finite coverings, belongs to one of the following three families of transversely projective foliations: the family of projective fibrations, the family of convex geodesic foliations, or the family of projective horocyclic foliations.
Mot clés : feuilletage transversalement projectif, variété de Seifert
Keywords: transversely projective foliations, Seifert manifolds
Barbot, Thierry 1
@article{AIF_2003__53_5_1551_0, author = {Barbot, Thierry}, title = {Feuilletages transversalement projectifs sur les vari\'et\'es de {Seifert}}, journal = {Annales de l'Institut Fourier}, pages = {1551--1613}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, volume = {53}, number = {5}, year = {2003}, doi = {10.5802/aif.1988}, zbl = {1036.57006}, mrnumber = {2032943}, language = {fr}, url = {https://aif.centre-mersenne.org/articles/10.5802/aif.1988/} }
TY - JOUR AU - Barbot, Thierry TI - Feuilletages transversalement projectifs sur les variétés de Seifert JO - Annales de l'Institut Fourier PY - 2003 SP - 1551 EP - 1613 VL - 53 IS - 5 PB - Association des Annales de l’institut Fourier UR - https://aif.centre-mersenne.org/articles/10.5802/aif.1988/ DO - 10.5802/aif.1988 LA - fr ID - AIF_2003__53_5_1551_0 ER -
%0 Journal Article %A Barbot, Thierry %T Feuilletages transversalement projectifs sur les variétés de Seifert %J Annales de l'Institut Fourier %D 2003 %P 1551-1613 %V 53 %N 5 %I Association des Annales de l’institut Fourier %U https://aif.centre-mersenne.org/articles/10.5802/aif.1988/ %R 10.5802/aif.1988 %G fr %F AIF_2003__53_5_1551_0
Barbot, Thierry. Feuilletages transversalement projectifs sur les variétés de Seifert. Annales de l'Institut Fourier, Tome 53 (2003) no. 5, pp. 1551-1613. doi : 10.5802/aif.1988. https://aif.centre-mersenne.org/articles/10.5802/aif.1988/
[1] Actions de groupes sur les 1-variétés non séparées et feuilletages de codimension un, Ann. Fac. Sci. Toulouse Math. (6), Volume 7 (1998) no. 4, pp. 559-597 | DOI | Numdam | MR | Zbl
[2] Variétés affines radiales de dimension trois, Bull. Soc. Math. France, Volume 128 (2000), pp. 347-389 | Numdam | MR | Zbl
[3] Flag structures on Seifert manifolds, Geom. Topol., Volume 5 (2001), pp. 227-266 | DOI | MR | Zbl
[4] Plane affine geometry of Anosov flows, Ann. Sci. École Norm. Sup., Volume 34 (2001) no. 6, pp. 871-889 | Numdam | MR | Zbl
[5] Sur les difféomorphismes d'Anosov affines à feuilletages stable et instable différentiables, Invent. Math., Volume 111 (1993) no. 2, pp. 285-308 | DOI | MR | Zbl
[6] Nilvariétés projectives, Comment. Math. Helv., Volume 69 (1994) no. 3, pp. 447-473 | DOI | MR | Zbl
[7] Automorphismes des cônes convexes, Invent. Math., Volume 141 (2000), pp. 149-193 | DOI | MR | Zbl
[8] Tores affines, Crystallographic groups and their generalizations (Kortrijk, 1999) (Contemp. Math.), Volume 262 (2000), pp. 1-37 | Zbl
[9] Convexes divisibles, C. R. Acad. Sci. Paris, Sér. I Math., Volume 332 (2001) no. 5, pp. 387-390 | DOI | MR | Zbl
[10] On transversely holomorphic flows. I, Invent. Math., Volume 126 (1996) no. 2, pp. 265-279 | DOI | MR | Zbl
[11] Projective geometry and projective metrics, Academic Press, 1953 | MR | Zbl
[12] Endsets of exceptionnal leaves; a theorem of G. Duminy, Foliations: geometry and dynamics (Warsaw, 2000) (2002), pp. 225-261 | Zbl
[13] Inexistence de structures affines sur les fibrés de Seifert, Math. Ann., Volume 296 (1993), pp. 743-753 | DOI | MR | Zbl
[14] Flots riemanniens, Transversal structure of foliations (Toulouse, 1982) (Astérisque), Volume 116 (1984), pp. 31-52 | Zbl
[15] Convex decomposition of real projective surfaces. I: -annuli and convexity, J. Diff. Geom., Volume 40 (1994), pp. 165-208 | MR | Zbl
[16] The classification of real projective structures on compact surfaces, Bull. Amer. Math. Soc., Volume 34 (1997), pp. 161-171 | DOI | MR | Zbl
[17] The decomposition and classification of radiant affine 3-manifolds, avec un appendice par T. Barbot, Mem. Amer. Math. Soc., Volume 154 (2001) no. 730 | MR | Zbl
[18] Solvariétés projectives de dimension trois (1999) (Thèse Université Paris VII)
[19] Foliations with all leaves compact, Ann. Inst. Fourier, Volume 26 (1976) no. 1, pp. 265-282 | DOI | Numdam | MR | Zbl
[20] Affine 3-manifolds that fiber by circles (1992) (preprint I.H.E.S)
[21] Transitive Anosov flows and pseudo-Anosov maps, Topology, Volume 22 (1983) no. 3, pp. 299-303 | DOI | MR | Zbl
[22] Three-dimensional affine crystallographic groups, Adv. in Math., Volume 47 (1983) no. 1, pp. 1-49 | DOI | MR | Zbl
[23] Flots d'Anosov dont les feuilletages stables sont différentiables, Ann. Sci. École Norm. Sup. (4), Volume 20 (1987) no. 2, pp. 251-270 | Numdam | MR | Zbl
[24] On transversely holomorphic flows. II, Invent. Math., Volume 126 (1996) no. 2, pp. 281-286 | DOI | MR | Zbl
[25] Convex real projective structures on compact surfaces, J. Diff. Geom., Volume 31 (1990), pp. 791-845 | MR | Zbl
[26] Geometric structures on manifolds and varieties of representations, Geometry of group representations (Boulder, CO, 1987) (Contemp. Math.), Volume 74 (1988), pp. 169-198 | Zbl
[27] Groupoïde d'holonomie et classifiants, Astérisque, Volume 116 (1984), pp. 70-97 | MR | Zbl
[28] Feuilletages en cylindres, Geometry and topology (Proc. III Latin Amer. School of Math., Inst. Mat. Pura Aplicada CNPq, Rio de Janeiro, 1976) (Lecture Notes in Math.), Volume 597 (1977), pp. 252-270 | Zbl
[29] Lectures on three-manifold topology, CBMS Regional Conference Series in Mathematics, Volume 43 (1980) | Zbl
[30] Affine flows on 3-manifolds, Mem. Amer. Math. Soc., Volume 162 (2003) no. 771 | MR | Zbl
[31] Transverse intersections of foliations in three-manifolds, Monogr. Enseign. Math., Volume 38 (2001) | MR | Zbl
[32] The geometry and topology of 3-manifolds, Princeton Lect. Notes, Chapitre 13, 1977
[33] Foliations on 3-manifolds which are circle bundles (1972) (Thesis, Berkeley)
[34] Eine Klasse von 3-dimensionalen Mannigfaltigkeiten. I, II, Invent. Math., Volume 3 (1967), pp. 308-333 | DOI | MR | Zbl
[34] Eine Klasse von 3-dimensionalen Mannigfaltigkeiten. I, II, Invent. Math. ibid, Volume 4 (1967), pp. 87-117 | MR | Zbl
Cité par Sources :