[Propriétés des théories des champs quantiques non hermitiens]
Dans cet article, je traite des systèmes quantiques dont l’hamiltonien est non-hermitien mais dont les niveaux d’énergie sont tous réels et positifs. De telles théories doivent être symétriques sous , mais pas sous et séparément. Récemment, des systèmes quantiques avec de telles propriétés ont été étudiés en détail. Dans cet article, j’étends ces résultats aux théories des champs quantiques. Parmi les systèmes dont je parle, se trouvent les théories et . Toutes ces théories ont des propriétés inattendues et remarquables. Je décris les fonctions de Green qui apparaissent dans ces théories et je présente de nouveaux résultats concernant les états liés, la renormalisation et les calculs non-perturbatifs.
In this paper I discuss quantum systems whose Hamiltonians are non-Hermitian but whose energy levels are all real and positive. Such theories are required to be symmetric under , but not symmetric under and separately. Recently, quantum mechanical systems having such properties have been investigated in detail. In this paper I extend the results to quantum field theories. Among the systems that I discuss are and theories. These theories all have unexpected and remarkable properties. I discuss the Green’s functions for these theories and present new results regarding bound states, renormalization, and nonperturbative calculations.
Keywords: ${\mathcal {C}}{\mathcal {P}}{\mathcal {T}}$, non-hermitian
Mot clés : ${\mathcal {C}}{\mathcal {P}}{\mathcal {T}}$, non-hermitien
Bender, Carl M. 1
@article{AIF_2003__53_4_997_0, author = {Bender, Carl M.}, title = {Properties of non-hermitian quantum field theories}, journal = {Annales de l'Institut Fourier}, pages = {997--1008}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, volume = {53}, number = {4}, year = {2003}, doi = {10.5802/aif.1971}, zbl = {1069.81030}, mrnumber = {2033507}, language = {en}, url = {https://aif.centre-mersenne.org/articles/10.5802/aif.1971/} }
TY - JOUR AU - Bender, Carl M. TI - Properties of non-hermitian quantum field theories JO - Annales de l'Institut Fourier PY - 2003 SP - 997 EP - 1008 VL - 53 IS - 4 PB - Association des Annales de l’institut Fourier UR - https://aif.centre-mersenne.org/articles/10.5802/aif.1971/ DO - 10.5802/aif.1971 LA - en ID - AIF_2003__53_4_997_0 ER -
%0 Journal Article %A Bender, Carl M. %T Properties of non-hermitian quantum field theories %J Annales de l'Institut Fourier %D 2003 %P 997-1008 %V 53 %N 4 %I Association des Annales de l’institut Fourier %U https://aif.centre-mersenne.org/articles/10.5802/aif.1971/ %R 10.5802/aif.1971 %G en %F AIF_2003__53_4_997_0
Bender, Carl M. Properties of non-hermitian quantum field theories. Annales de l'Institut Fourier, Tome 53 (2003) no. 4, pp. 997-1008. doi : 10.5802/aif.1971. https://aif.centre-mersenne.org/articles/10.5802/aif.1971/
[8] Quantum Complex Henon-Heiles Potentials, Phys. Lett. A, Volume 281 (2001), pp. 311-316 | DOI | MR | Zbl
[1] PCT, Spin \& Statistics and all that, Benjamin, New York, 1964 | MR | Zbl
[2] A New Perturbative Approach to Nonlinear Problems, J. Math. Phys, Volume 30 (1989), pp. 1447-1455 | DOI | MR | Zbl
[3] Real Spectra in Non-Hermitian hamiltonians Having PT Symmetry, Phys. Rev. Lett., Volume 80 (1998), pp. 5243-5246 | DOI | MR | Zbl
[4] PT-Symmetric Quantum Mechanics, J. Math. Phys., Volume 40 (1999), pp. 2201-2229 | DOI | MR | Zbl
[4] Eigenvalues of complex Hamiltonians with PT-symmetry, Phys. Lett. A, Volume 250 (1998), pp. 29-32 | DOI | MR
[5] The ODE/IM correspondence PT-symmetric quantum mechanics, J. Phys. A, Math. Gen., Volume 34 (2002), p. 391-400 and 5679--5704 | MR
[5] On the reality of the eigenvalues for a class of PT-symmetric oscillators, Comm. Math. Phys., Volume 229 (2002), pp. 543-564 | DOI | MR | Zbl
[6] Calculation of the One-Point Green's Function for a - Quantum Field Theory, Phys. Rev. D, Volume 63 (2001), p. 45001-1--45001-10 | DOI
[7] Bound States of Non-Hermitian Quantum Field Theories, Phys. Lett. A, Volume 291 (2001), pp. 197-202 | DOI | MR | Zbl
[9] Two-Point Green's Function in PT-Symmetric Theories, Phys. Lett. A, Volume 302 (2002), pp. 286-290 | DOI | MR | Zbl
[10] Complex Extension of Quantum Mechanics, Volume quant-ph 0208076 (2002) | MR
[11] Generalized Symmetry and Real Spectra, J. Phys. A, Math. Gen., Volume 35 (2002), pp. 467-471 | DOI | MR | Zbl
[11] Space of state vectors in PT-symmetric quantum mechanics, J. Phys. A, Volume 35 (2002), pp. 1709-1718 | DOI | MR | Zbl
Cité par Sources :