[Plans discrets, actions de , algorithme de Jacobi-Perron et substitutions]
Nous définissons des substitutions bi-dimensionnelles; ces substitutions engendrent des suites doubles reliées à des approximations discrètes de plans irrationnels. Elles sont obtenues au moyen de l’algorithme classique de Jacobi Perron, en définissant l’induction d’une action de par rotations sur le cercle. On donne ainsi une interprétation géométrique nouvelle de l’algorithme de Jacobi-Perron, comme application opérant sur l’espace des paramètres des actions de par rotations.
We introduce two-dimensional substitutions generating two-dimensional sequences related to discrete approximations of irrational planes. These two-dimensional substitutions are produced by the classical Jacobi-Perron continued fraction algorithm, by the way of induction of a -action by rotations on the circle. This gives a new geometric interpretation of the Jacobi-Perron algorithm, as a map operating on the parameter space of -actions by rotations.
Keywords: substitutions, generalized continued fractions, discrete plans, tilings, Jacobi-Perron algorithm, induction, ${\mathbb {Z}}^2$-actions, two-dimensional sequences
Mot clés : substitutions, fractions continues généralisées, plans discrets, pavages, algorithme de Jacobi-Perron, induction, actions de ${\mathbb {Z}}^2$, suites doubles
Arnoux, Pierre 1 ; Berthé, Valérie 1 ; Ito, Shunji 2
@article{AIF_2002__52_2_305_0, author = {Arnoux, Pierre and Berth\'e, Val\'erie and Ito, Shunji}, title = {Discrete planes, ${\mathbb {Z}}^2$-actions, {Jacobi-Perron} algorithm and substitutions}, journal = {Annales de l'Institut Fourier}, pages = {305--349}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, volume = {52}, number = {2}, year = {2002}, doi = {10.5802/aif.1889}, zbl = {1017.11006}, mrnumber = {1906478}, language = {en}, url = {https://aif.centre-mersenne.org/articles/10.5802/aif.1889/} }
TY - JOUR AU - Arnoux, Pierre AU - Berthé, Valérie AU - Ito, Shunji TI - Discrete planes, ${\mathbb {Z}}^2$-actions, Jacobi-Perron algorithm and substitutions JO - Annales de l'Institut Fourier PY - 2002 SP - 305 EP - 349 VL - 52 IS - 2 PB - Association des Annales de l’institut Fourier UR - https://aif.centre-mersenne.org/articles/10.5802/aif.1889/ DO - 10.5802/aif.1889 LA - en ID - AIF_2002__52_2_305_0 ER -
%0 Journal Article %A Arnoux, Pierre %A Berthé, Valérie %A Ito, Shunji %T Discrete planes, ${\mathbb {Z}}^2$-actions, Jacobi-Perron algorithm and substitutions %J Annales de l'Institut Fourier %D 2002 %P 305-349 %V 52 %N 2 %I Association des Annales de l’institut Fourier %U https://aif.centre-mersenne.org/articles/10.5802/aif.1889/ %R 10.5802/aif.1889 %G en %F AIF_2002__52_2_305_0
Arnoux, Pierre; Berthé, Valérie; Ito, Shunji. Discrete planes, ${\mathbb {Z}}^2$-actions, Jacobi-Perron algorithm and substitutions. Annales de l'Institut Fourier, Tome 52 (2002) no. 2, pp. 305-349. doi : 10.5802/aif.1889. https://aif.centre-mersenne.org/articles/10.5802/aif.1889/
[1] Chaos from order, a worked out example, Complex Systems (2001), pp. 1-67
[2] Sturmian sequences, Substitutions in Dynamics, Arithmetics and Combinatorics (To appear in Lecture Notes in Math.)
[3] Pisot substitutions and Rauzy fractals, Bull. Belg. Math. Soc. Simon Stevin, Volume 8 (2001), pp. 181-207 | MR | Zbl
[4] Trajectories of rotations, Acta Arith., Volume 87 (1999), pp. 209-217 | MR | Zbl
[5] Higher dimensional extensions of substitutions and their dual maps, J. Anal. Math., Volume 83 (2001), pp. 183-206 | DOI | MR | Zbl
[6] Représentation géométrique de suites de complexité , Bull. Soc. Math. France, Volume 119 (1991), pp. 199-215 | Numdam | MR | Zbl
[7] Tracé de droites, fractions continues et morphismes itérés, Mots, Lang. Raison. Calc. (1990), pp. 298-309
[8] Recent results in Sturmian words, Developments in Language Theory II (1996), pp. 13-24 | Zbl
[9] Chapter 2: Sturmian words in M. Lothaire, Algebraic Combinatorics on Words (To appear)
[10] Tilings and rotations on the torus: a two-dimensional generalization of Sturmian sequences, Discrete Math., Volume 223 (2000), pp. 27-53 | DOI | MR | Zbl
[11] Suites doubles de basse complexité, J. Th. Nombres Bordeaux, Volume 12 (2000), pp. 179-208 | DOI | Numdam | MR | Zbl
[12] Palindromes and two-dimensional Sturmian sequences, J. Auto. Lang. Comp., Volume 6 (2001), pp. 121-138 | MR | Zbl
[13] Multi-dimensional continued fraction algorithms, Mathematical Centre Tracts, 145, Matematisch Centrum, Amsterdam, 1981 | Zbl
[14] Fractions continues multidimensionnelles et lois stables, Bull. Soc. Math. France, Volume 124 (1999), pp. 97-139 | Numdam | MR | Zbl
[15] Exposants caratéristiques de l'algorithme de Jacobi-Perron et la transformation associée, Ann. Inst. Fourier, Volume 51 (2001) no. 3, pp. 565-686 | DOI | Numdam | MR | Zbl
[16] Descriptions of the characteristic sequence of an irrational, Canad. Math. Bull., Volume 36 (1993), pp. 15-21 | DOI | MR | Zbl
[17] Geometric representations of primitive substitutions of Pisot type (To appear in Trans. Amer. Math. Soc.) | MR | Zbl
[18] Quaquaversal tilings and rotations, Inventiones Math., Volume 132 (1998), pp. 179-188 | DOI | MR | Zbl
[19] A characterization of substitutive sequences using return words, Discrete Math., Volume 179 (1998), pp. 89-101 | DOI | MR | Zbl
[20] Sur la topologie d'un plan arithmétique, Th. Comput. Sci., Volume 156 (1996), pp. 159-176 | DOI | MR | Zbl
[21] Two-dimensional Languages, Handbook of Formal languages, Volume vol. 3 (1997)
[22] Matching rules and substitution tilings, Annals of Math., Volume 147 (1998), pp. 181-223 | DOI | MR | Zbl
[23] On Rauzy fractal, Japan J. Indust. Appl. Math., Volume 8 (1991), pp. 461-486 | DOI | MR | Zbl
[24] Modified Jacobi-Perron algorithm and generating Markov partitions for special hyperbolic toral automorphisms, Tokyo J. Math., Volume 16 (1993), pp. 441-472 | DOI | MR | Zbl
[25] Parallelogram tilings and Jacobi-Perron algorithm, Tokyo J. Math., Volume 17 (1994), pp. 33-58 | DOI | MR | Zbl
[26] Approximations in ergodic theory, Usp. Math. Nauk. (in Russian), Volume 22 (1967), pp. 81-106 | MR | Zbl
[26] Approximations in ergodic theory, Russian Math. Surveys, Volume 22 (1967), pp. 76-102 | MR | Zbl
[27] Propriétés arithmétiques et dynamiques du fractal de Rauzy, J. Th. Nombres Bordeaux, Volume 10 (1998), pp. 135-162 | DOI | Numdam | MR | Zbl
[28] Frontière du fractal de Rauzy et système de numération complexe, Acta Arith., Volume 95 (2000), pp. 195-224 | MR | Zbl
[29] Symbolic dynamics II: Sturmian trajectories, Amer. J. Math., Volume 62 (1940), pp. 1-42 | DOI | JFM | MR | Zbl
[30] Towards a characterization of self-similar tilings in terms of derived Voronoï tessellations, Geom. Dedicata, Volume 79 (2000), pp. 239-265 | DOI | MR | Zbl
[31] Substitution dynamical systems, Spectral analysis (Lecture Notes in Math.), Volume 1294 (1987) | Zbl
[32] Space tilings and substitutions, Geom. Dedicata, Volume 55 (1995), pp. 257-264 | DOI | MR | Zbl
[33] Miles of tiles, Student Mathematical Library, Vol. 1, Amer. Math. Soc., Providence, 1999 | MR | Zbl
[34] A homeomorphism invariant for substitution tiling spaces (To appear in Geom. Dedicata) | MR | Zbl
[35] Nombres algébriques et substitutions, Bull. Soc. Math. France, Volume 110 (1982), pp. 147-178 | Numdam | MR | Zbl
[36] Combinatorial pieces in digital lines and planes, Vision geometry IV (San Diego, CA, 1995) (Proc. SPIE), Volume 2573, pp. 23-24
[37] Suites automatiques à multi-indices, Sém. Th. Nombres Bordeaux, Volume exp. no 4 (1986-1987) | Zbl
[38] Suites automatiques à multi-indices et algébricité, C. R. Acad. Sci. Paris, Sér. I Math., Volume 305 (1987), pp. 501-504 | MR | Zbl
[39] Quasicrystals and geometry, Cambridge University Press, 1995 | MR | Zbl
[40] The metrical theory of Jacobi-Perron algorithm, Lecture Notes in Math., 334, Springer-Verlag, 1973 | MR | Zbl
[41] Geometric study of the set of beta-integers with a Perron number, a -number and a Pisot number and mathematical quasicrystals (2000) (Prépublication de l'Institut Fourier, 513)
[42] Combinatoire des motifs d'une suite sturmienne bidimensionnelle, Th. Comput. Sci., Volume 209 (1998), pp. 261-285 | DOI | MR | Zbl
Cité par Sources :