Sur les ensembles de Julia et Fatou des fonctions entières ultramétriques
Annales de l'Institut Fourier, Tome 51 (2001) no. 6, pp. 1635-1661.

Soit p un nombre premier rationnel. Le sujet de l’article est l’étude de la dynamique des fonctions entières p-adiques. On démontre des résultats analogues à ceux connus dans le domaine complexe, en particulier si deux fonctions entières p-adiques qui ont un point répulsif commun commutent, alors leurs ensembles de Julia et de Fatou sont les mêmes.

Let p a rational prime number. The paper is on the dynamics of p-adic entire functions. We prove results analogous to those known in complex dynamical system. In particular, for commuting entire transcendental functions, under the condition that they have a common periodical repulsive point, they have the same Julia and Fatou sets.

DOI : 10.5802/aif.1869
Classification : 37F99, 11S99
Mot clés : fonctions entières $p$-adiques, ensemble de Julia, ensemble de Fatou, dynamique $p$-adique
Keywords: entire $p$-adic functions, Julia set, Fatou set, ultrametric dynamics

Bézivin, Jean-Paul 1

1 Université de Caen, Département de Mathématiques et Mécanique, Campus II, Boulevard du Maréchal Juin, BP 5186, 14032 Caen Cedex (France)
@article{AIF_2001__51_6_1635_0,
     author = {B\'ezivin, Jean-Paul},
     title = {Sur les ensembles de {Julia} et {Fatou} des fonctions enti\`eres ultram\'etriques},
     journal = {Annales de l'Institut Fourier},
     pages = {1635--1661},
     publisher = {Association des Annales de l{\textquoteright}institut Fourier},
     volume = {51},
     number = {6},
     year = {2001},
     doi = {10.5802/aif.1869},
     zbl = {01710113},
     mrnumber = {1871284},
     language = {fr},
     url = {https://aif.centre-mersenne.org/articles/10.5802/aif.1869/}
}
TY  - JOUR
AU  - Bézivin, Jean-Paul
TI  - Sur les ensembles de Julia et Fatou des fonctions entières ultramétriques
JO  - Annales de l'Institut Fourier
PY  - 2001
SP  - 1635
EP  - 1661
VL  - 51
IS  - 6
PB  - Association des Annales de l’institut Fourier
UR  - https://aif.centre-mersenne.org/articles/10.5802/aif.1869/
DO  - 10.5802/aif.1869
LA  - fr
ID  - AIF_2001__51_6_1635_0
ER  - 
%0 Journal Article
%A Bézivin, Jean-Paul
%T Sur les ensembles de Julia et Fatou des fonctions entières ultramétriques
%J Annales de l'Institut Fourier
%D 2001
%P 1635-1661
%V 51
%N 6
%I Association des Annales de l’institut Fourier
%U https://aif.centre-mersenne.org/articles/10.5802/aif.1869/
%R 10.5802/aif.1869
%G fr
%F AIF_2001__51_6_1635_0
Bézivin, Jean-Paul. Sur les ensembles de Julia et Fatou des fonctions entières ultramétriques. Annales de l'Institut Fourier, Tome 51 (2001) no. 6, pp. 1635-1661. doi : 10.5802/aif.1869. https://aif.centre-mersenne.org/articles/10.5802/aif.1869/

[AV] D.K. Arrowsmith; F. Vivaldi Geometry of p-adic Siegel discs, Physica, Volume D 71 (1994) no. 1-2, pp. 222-236 | MR | Zbl

[B] J.-P. Bézivin Sur les points périodiques des applications rationnelles en dynamique ultramétrique (à paraître dans Acta Arithmetica) | Zbl

[BA1] I.N. Baker Permutable entire functions, Math. Zeitschrift, Volume 79 (1962), pp. 243-249 | DOI | MR | Zbl

[BA2] I.N. Baker Repulsive fixpoints of entire functions, Math. Zeitschrift, Volume 104 (1968), pp. 252-256 | DOI | MR | Zbl

[BE1] R. Benedetto Reduction, dynamics and Julia sets and reduction of rational functions (To appear in Journal of Number theory) | Zbl

[BE2] R. Benedetto Hyperbolic maps and p-adic dynamics (To appear in Ergodic theory and Dynamical systems) | Zbl

[BE3] R. Benedetto p-adic dynamics and Sullivan's No Wandering Domains Theorem, Compositio Mathematica, Volume 122 (2000), pp. 281-298 | DOI | MR | Zbl

[BE4] R. Benedetto Components and periodic points in non archimedean dynamics (July 1999) (preprint) | MR | Zbl

[BEA] A.F. Beardon Iteration of rational functions, Springer-Verlag, New-York, 1991 | MR | Zbl

[ER] A.E. Eremenko On the iteration of entire functions, Dynamical system and ergodic theory, Volume vol. 23 (1989), pp. 339-345 | Zbl

[FA] P. Fatou Sur l'itération analytique et les substitutions permutables, Journal de Mathématique, Volume 2 (1923) no. 4, pp. 343-384 | JFM

[FVDP] J. Fresnel; M. Van der Put Géométrie rigide et applications, Progress in Math., Birkhäuser, 1981 | MR | Zbl

[HS1] L. Hsia A weak Néron model with application to p-adic dynamical systems, Compositio Math., Volume 100 (1996), pp. 277-304 | Numdam | MR | Zbl

[HS2] L. Hsia Closure of periodic points over a non archimedean field, J. London Math. Soc., Volume 62 (2000), pp. 685-700 | DOI | MR | Zbl

[IY] G. Iyer On permutable integral functions, J. London Math. Soc., Volume 34 (1959) | MR | Zbl

[JU] G. Julia Œuvres, Volume II, pp. 64-100

[LI1] H.C. Li p-adic periodic points and sen's theorem, J. of Number Th., Volume 56 (1996), pp. 309-318 | DOI | MR | Zbl

[LI2] H.C. Li Counting periodic points of p-adic power series, Compositio Math., Volume 100 (1996), pp. 351-364 | Numdam | MR | Zbl

[LI3] H.C. Li p-adic dynamical systems and formal groups, Compos. Math., Volume 104 (1996) no. 1, pp. 41-54 | Numdam | MR | Zbl

[LI4] H.C. Li When is a p-adic power series an endomorphism of a formal group? Proc. Am. Math. Soc, Proc. Am. Math. Soc., Volume 124 (1996) no. 8, pp. 2325-2329 | DOI | MR | Zbl

[LU] J. Lubin Nonarchimedean dynamical systems, Compositio Math., Volume 94 (1994), pp. 321-346 | Numdam | MR | Zbl

[MI] J. Milnor Dynamics in one complex variable, Introductory lectures, Vieweg, Wiesbaden, 1999 | MR | Zbl

[MS1] P. Morton; J. Silverman Rational periodic points of rational functions, Inter. Math. Res. Notices, Volume 2 (1994), pp. 97-110 | DOI | MR | Zbl

[MS2] P. Morton; J. Silverman Periodic points, multiplicities and dynamical units, J. reine und ang. Math, Volume 461 (1995), pp. 81-122 | DOI | MR | Zbl

[NG] T.W. NG Permutable entire functions and their Julia sets (To appear in Math Proc Cambr Phil Soc.) | MR | Zbl

[PY] K.K. Poon; C.C. Yang Dynamical behaviour of two permutable functions, Ann. Polon. Math, Volume 68 (1998), pp. 159-163 | MR | Zbl

[RI] J.-F. Ritt Permutable rational functions, Trans. Amer. Math. Soc., Volume 25 (1923), pp. 399-448 | DOI | JFM | MR

[SW] N. Smart; C. Woodcock p-adic Chaos and ramdom number generation, Experiment. Math., Volume 7 (1998) no. 3, pp. 765-788 | MR | Zbl

[TVW] E. Thiran; D. Verstegen; J. Weyers p-adic dynamics, J. Stat. Phys., Volume 54 (1989) no. 3/4, pp. 893-913 | DOI | MR | Zbl

[VE] D. Verstegen p-adic dynamical systems, Number theory and physics, Proc. Winter Sch, Les Houches, 1989, Volume 47 (1990), pp. 235-242 | Zbl

Cité par Sources :