Soit l’espace vectoriel des intégrales abéliennes
où est un polynôme réel fixé, est un polynôme réel quelconque, et est l’intérieur de l’ovale de qui contient l’origine et tend vers lui quand . Nous démontrons que si est un polynôme quasi-homogène avec des points critiques de Morse, alors est un -module libre de type fini, dont nous calculons le rang. Nous trouvons les générateurs de dans le cas où est de degré trois. Ce résultat est ensuite appliqué à l’étude des perturbations polynomiales de degré des champs de vecteurs hamiltoniens quadratiques réversibles, avec un centre et un point selle. Nous démontrons que, si la fonction de Poincaré-Pontryagin n’est pas identiquement nulle, alors la borne supérieure exacte du nombre de cycles limites dans tout domaine compact du plan est égale à .
Let be the real vector space of Abelian integrals
where is a fixed real polynomial, is an arbitrary real polynomial and , , is the interior of the oval of which surrounds the origin and tends to it as . We prove that if is a semiweighted homogeneous polynomial with only Morse critical points, then is a free finitely generated module over the ring of real polynomials , and compute its rank. We find the generators of in the case when is an arbitrary cubic polynomial. Finally we apply this in the study of degree polynomial perturbations of quadratic reversible Hamiltonian vector fields with one center and one saddle points. We prove that, if the Poincaré-Pontryagin function is not identically zero, then the exact upper bound for the number of limit cycles on the finite plane is .
@article{AIF_1999__49_2_611_0, author = {Gavrilov, Lubomir}, title = {Abelian integrals related to {Morse} polynomials and perturbations of plane hamiltonian vector fields}, journal = {Annales de l'Institut Fourier}, pages = {611--652}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, volume = {49}, number = {2}, year = {1999}, doi = {10.5802/aif.1684}, zbl = {0924.58077}, mrnumber = {2000c:34081}, language = {en}, url = {https://aif.centre-mersenne.org/articles/10.5802/aif.1684/} }
TY - JOUR AU - Gavrilov, Lubomir TI - Abelian integrals related to Morse polynomials and perturbations of plane hamiltonian vector fields JO - Annales de l'Institut Fourier PY - 1999 SP - 611 EP - 652 VL - 49 IS - 2 PB - Association des Annales de l’institut Fourier UR - https://aif.centre-mersenne.org/articles/10.5802/aif.1684/ DO - 10.5802/aif.1684 LA - en ID - AIF_1999__49_2_611_0 ER -
%0 Journal Article %A Gavrilov, Lubomir %T Abelian integrals related to Morse polynomials and perturbations of plane hamiltonian vector fields %J Annales de l'Institut Fourier %D 1999 %P 611-652 %V 49 %N 2 %I Association des Annales de l’institut Fourier %U https://aif.centre-mersenne.org/articles/10.5802/aif.1684/ %R 10.5802/aif.1684 %G en %F AIF_1999__49_2_611_0
Gavrilov, Lubomir. Abelian integrals related to Morse polynomials and perturbations of plane hamiltonian vector fields. Annales de l'Institut Fourier, Tome 49 (1999) no. 2, pp. 611-652. doi : 10.5802/aif.1684. https://aif.centre-mersenne.org/articles/10.5802/aif.1684/
[1] Le groupe de monodromie du déploiement des singularités isolées de courbes planes, I, Math. Ann., 213 (1975), 1-32. | MR | Zbl
,[2] Singularities of Differentiable Maps, vols. 1 and 2, Monographs in mathematics, Birkhäuser, Boston, 1985 and 1988.
, , ,[3] Ordinary Differential Equations, in ‘Dynamical Systems, I', Encyclopaedia of Math. Sci., vol. 1, Springer, Berlin, 1988. | Zbl
, ,[4] Geometrical Methods in the Theory of Ordinary Differential Equations, Springer, New York, 1988.
,[5] Die Monodromie der isolierten Singularitäten von Hyperfläschen, Manuscripta Math., 2 (1970), 103-161. | MR | Zbl
,[6] Isochronicity of plane polynomial Hamiltonian systems, Nonlinearity, 10 (1997), 433-448. | MR | Zbl
,[7] Petrov modules and zeros of Abelian integrals, Bull. Sci. Math., 122 (1998), 571-584. | MR | Zbl
,[8] Nonoscillation of elliptic integrals related to cubic polynomials of order three, Bull. London Math. Soc., 30 (1998), 267-273. | MR | Zbl
,[9] Modules of Abelian integrals, Proc. of the IVth Catalan days of applied mathematics, p. 35-45, Tarragona, Spain, 1998. | MR | Zbl
,[10] Limit cycles of perturbations of quadratic vector fields, J. Math. Pures Appl., 72 (1993), 213-238. | MR | Zbl
, ,[11] Principles of Algebraic Geometry, John Wiley and Sons, 1978. | MR | Zbl
, ,[12] Linear estimate for the number of zeros of Abelian integrals with cubic Hamiltonians, Nonlinearity, 11 (1998), 1521-1537. | MR | Zbl
, ,[13] On the number of limit cycles in perturbations of quadratic Hamiltonian systems, Proc. London Math. Soc., 69 (1994), 198-224. | MR | Zbl
, ,[14] Dynkin digrams of singularities of functions of two variables, Functional Anal. Appl., 8 (1974), 10-13, 295-300. | Zbl
,[15] Perturbations of quadratic centers, Bull. Sci. Math., 122 (1998), 107-161. | MR | Zbl
,[16] Higher-order Melnikov functions for degenerate cubic Hamiltonians, Adv. Diff. Equations, 1 (1996), 689-708. | MR | Zbl
,[17] Dulac's memoir “On Limit Cycles” and related problems of the local theory of differential equations, Russian Math. Surveys, 40 (1985), 1-49. | Zbl
,[18] Intégrales asymptotiques et monodromie, Ann. scient. Ec. Norm. Sup., 7 (1974), 405-430. | Numdam | MR | Zbl
,[19] The number of limit cycles of polynomial deformations of a Hamiltonian vector field, Ergod. Th. and Dynam. Sys., 10 (1990), 523-529. | MR | Zbl
,[20] Chebishev systems and the versal unfolding of the cusp of order n, Hermann, collection Travaux en Cours, 1998. | Zbl
,[21] Complex algebraic curves via their links at infinity, Inv. Math., 98 (1989), 445-489. | MR | Zbl
,[22] Number of zeros of complete elliptic integrals, Funct. Anal. Appl., 18 (1984), 73-74. | MR | Zbl
,[23] Elliptic integrals and their nonoscillation, Funct. Anal. Appl., 20 (1986), 37-40. | MR | Zbl
,[24] Nonoscillation of elliptic integrals, Funct. Anal. Appl., 24 (1990), 45-50. | MR | Zbl
,[25] On dynamic systems close to Hamiltonian systems, Zh. Eksp. Teor. Fiz., 4 (1934), 234-238, in russian.
,[26] On the number of limit cycles which appear by perturbation of separatrix loop of planar vector fields, Bol. Soc. Bras. Math., (2), vol.17 (1986), 67-101. | Zbl
,[27] Zeros of complete elliptic integrals for 1: 2 resonance, J. Diff. Equations, 94 (1991), 41-54. | MR | Zbl
, ,[28] Preuve d'une conjecture de Brieskorn, Manuscripta Math., 2 (1970), 301-308. | MR | Zbl
,[29] Abelian integrals in unfolding of codimension 3 singular planar vector firlds, in 'Bifurcations of Planar Vector Fields', Lecture Notes in Math., vol. 1480, Springer (1991).
,[30] Quadratic systems with center and their perturbations, J. Diff. Equations, 109 (1994), 223-273. | MR | Zbl
,Cité par Sources :