Soient une surface, une sous-surface et deux entiers positifs. L’inclusion de dans induit un homomorphisme du groupe des tresses à brins de dans le groupe des tresses à brins de . Nous donnons dans un premier temps des conditions nécessaires et suffisantes pour que cet homomorphisme soit injectif et caractérisons le commensurateur, le normalisateur et le centralisateur de dans . Ensuite, nous déterminons le commensurateur, le normalisateur et le centralisateur de dans dans les cas où est un disque et où est large.
Let be a surface, let be a subsurface, and let be two positive integers. The inclusion of in gives rise to a homomorphism from the braid group with strings on to the braid group with strings on . We first determine necessary and sufficient conditions that this homomorphism is injective, and we characterize the commensurator, the normalizer and the centralizer of in . Then we calculate the commensurator, the normalizer and the centralizer of in for large surface braid groups.
@article{AIF_1999__49_2_417_0, author = {Paris, Luis and Rolfsen, Dale}, title = {Geometric subgroups of surface braid groups}, journal = {Annales de l'Institut Fourier}, pages = {417--472}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, volume = {49}, number = {2}, year = {1999}, doi = {10.5802/aif.1680}, zbl = {0962.20028}, mrnumber = {2000f:20059}, language = {en}, url = {https://aif.centre-mersenne.org/articles/10.5802/aif.1680/} }
TY - JOUR AU - Paris, Luis AU - Rolfsen, Dale TI - Geometric subgroups of surface braid groups JO - Annales de l'Institut Fourier PY - 1999 SP - 417 EP - 472 VL - 49 IS - 2 PB - Association des Annales de l’institut Fourier UR - https://aif.centre-mersenne.org/articles/10.5802/aif.1680/ DO - 10.5802/aif.1680 LA - en ID - AIF_1999__49_2_417_0 ER -
%0 Journal Article %A Paris, Luis %A Rolfsen, Dale %T Geometric subgroups of surface braid groups %J Annales de l'Institut Fourier %D 1999 %P 417-472 %V 49 %N 2 %I Association des Annales de l’institut Fourier %U https://aif.centre-mersenne.org/articles/10.5802/aif.1680/ %R 10.5802/aif.1680 %G en %F AIF_1999__49_2_417_0
Paris, Luis; Rolfsen, Dale. Geometric subgroups of surface braid groups. Annales de l'Institut Fourier, Tome 49 (1999) no. 2, pp. 417-472. doi : 10.5802/aif.1680. https://aif.centre-mersenne.org/articles/10.5802/aif.1680/
[Ar1] Theorie der Zöpfe, Abh. Math. Sem. Hamburg, 4 (1926), 47-72. | JFM
,[Ar2] Theory of braids, Annals of Math., 48 (1946), 101-126. | MR | Zbl
,[Bi1] On braid groups, Comm. Pure Appl. Math., 22 (1969), 41-72. | MR | Zbl
,[Bi2] Braids, links, and mapping class groups, Annals of Math. Studies 82, Princeton University Press, 1973. | Zbl
,[Bi3] Mapping class groups of surfaces, Contemporary Mathematics, 78 (1988), 13-43. | MR | Zbl
,[Br] Cohomology of groups, Springer-Verlag, New York, 1982. | MR | Zbl
,[Ch] On the algebraic braid group, Annals of Math., 49 (1948), 654-658. | MR | Zbl
,[Co] Artin's braid groups, classical homotopy theory, and sundry other curiosities, Contemp. Math., 78 (1988), 167-206. | Zbl
,[Ep] Curves on 2-manifolds and isotopies, Acta Math., 115 (1966), 83-107. | MR | Zbl
,[FaN] Configuration spaces, Math. Scand., 10 (1962), 111-118. | MR | Zbl
, ,[FoN] The braid groups, Math. Scand., 10 (1962), 119-126. | MR | Zbl
, ,[FaV] The braid groups of E2 and S2, Duke Math. J., 29 (1962), 243-258. | MR | Zbl
, ,[FRZ] Centralisers in the braid group and singular braid monoid, L'Enseignement Math., 42 (1996), 75-96. | MR | Zbl
, , ,[Ga] The braid groups and other groups, Oxford Quart. J. Math., 20 (1969), 235-254. | MR | Zbl
,[Go] An exact sequence of braid groups, Math. Scand., 33 (1973), 69-82. | MR | Zbl
,[GV] The word problem and its consequences for the braid groups and mapping class groups of the 2-sphere, Trans. Amer. Math. Soc., 131 (1968), 277-296. | MR | Zbl
, ,[LS] Combinatorial group theory, Springer-Verlag, Berlin, 1977. | MR | Zbl
, ,[Ro] Braid subgroup normalisers and commensurators and induced representations, Invent. Math., 130 (1997), 575-587. | MR | Zbl
,[Sc] Braid groups and the group of homeomorphisms of a surface, Proc. Camb. Phil. Soc., 68 (1970), 605-617. | MR | Zbl
,[Se] Arbres, amalgames, SL2, Astérisque, Soc. Math. France, 46 (1977). | MR | Zbl
,[Va] Braid groups of compact 2-manifolds with elements of finite order, Trans. Amer. Math. Soc, 122 (1966), 81-97. | MR | Zbl
,Cité par Sources :