@article{AIF_1964__14_1_1_0, author = {Spencer, D. C.}, title = {De {Rham} theorems and {Neumann} decompositions associated with linear partial differential equations}, journal = {Annales de l'Institut Fourier}, pages = {1--19}, publisher = {Institut Fourier}, address = {Grenoble}, volume = {14}, number = {1}, year = {1964}, doi = {10.5802/aif.154}, zbl = {0131.32001}, mrnumber = {34 #5109}, language = {en}, url = {https://aif.centre-mersenne.org/articles/10.5802/aif.154/} }
TY - JOUR AU - Spencer, D. C. TI - De Rham theorems and Neumann decompositions associated with linear partial differential equations JO - Annales de l'Institut Fourier PY - 1964 SP - 1 EP - 19 VL - 14 IS - 1 PB - Institut Fourier PP - Grenoble UR - https://aif.centre-mersenne.org/articles/10.5802/aif.154/ DO - 10.5802/aif.154 LA - en ID - AIF_1964__14_1_1_0 ER -
%0 Journal Article %A Spencer, D. C. %T De Rham theorems and Neumann decompositions associated with linear partial differential equations %J Annales de l'Institut Fourier %D 1964 %P 1-19 %V 14 %N 1 %I Institut Fourier %C Grenoble %U https://aif.centre-mersenne.org/articles/10.5802/aif.154/ %R 10.5802/aif.154 %G en %F AIF_1964__14_1_1_0
Spencer, D. C. De Rham theorems and Neumann decompositions associated with linear partial differential equations. Annales de l'Institut Fourier, Tome 14 (1964) no. 1, pp. 1-19. doi : 10.5802/aif.154. https://aif.centre-mersenne.org/articles/10.5802/aif.154/
[1] The Neumann problem for multifoliate structure, thesis, Princeton University, (1962) (to appear).
,[2] The Neumann's problem for differential forms on riemannian manifolds, Memoirs of the Amer. Math. Soc., No. 20 (1956). | MR | Zbl
,[3] Harmonic tensors on riemannian manifolds with boundary, Annals of Math., vol. 45 (1951), pp. 128-156. | Zbl
and ,[4] Multifoliate structures, Annals of Math., vol. 74 (1961), pp. 52-100. | MR | Zbl
and ,[5] Solutions of the -Neumann problem on strongly pseudoconvex manifolds, Proc. Nat. Acad. Sci., U.S.A., vol. 47 (1961), pp. 1198-1202. | MR | Zbl
, a)Regularity at the boundary of the -Neumann problem, Proc. Nat. Acad. Sci., U.S.A., vol. 49 (1963), pp. 206-213. | MR | Zbl
b)Harmonic integrals on strongly pseudoconvex manifolds, I, Annals of Math., vol. 78 (1963), pp. 112-148. | MR | Zbl
c)Harmonic integrals on strongly pseudoconvex manifolds, II, Annals of Math. (to appear). | Zbl
d)[6] A variational method in the theory of harmonic integrals, II, Amer. Journal of Math., vol. 58 (1956), pp. 137-169. | MR | Zbl
,[7] Complex analytic coordinates in almost complex manifolds, Annals of Math., vol. 65 (1957), pp. 391-404. | MR | Zbl
and. ,[8] A complex Frobenius theorem, Seminars on analytic functions, Institute for Advances Study, vol. 1 (1957), pp. 172-179.
,[9] Deformation of structures on manifolds defined by transitive, continuous pseudogroups, I-II, Annals of Math., vol. 76 (1962), pp. 306-445. | MR | Zbl
, a)Deformation of structures on manifolds defined by transitive, continuous pseudogroups. Part III : Structures defined by elliptic pseudogroups (to appear). | Zbl
b)Harmonic integrals and Neumann problems associated with linear partial differential equations, in Outlines of the joint Soviet-American Symposium on partial differential equations, August, 1963, Novosibirsk, pp. 253-260.
c)Cité par Sources :