Galois covers between K3 surfaces
Annales de l'Institut Fourier, Tome 46 (1996) no. 1, pp. 73-88.

Nous donnons une classification des actions de groupes finis sur une surface K3 ayant des quotients K3, du point de vue des points fixes. Il est montré qu’à part deux cas, chacun des groupes donne un unique type de points fixes.

We give a classification of finite group actions on a K3 surface giving rise to K3 quotients, from the point of view of their fixed points. It is shown that except two cases, each such group gives rise to a unique type of fixed point set.

@article{AIF_1996__46_1_73_0,
     author = {Xiao, Gang},
     title = {Galois covers between $K3$ surfaces},
     journal = {Annales de l'Institut Fourier},
     pages = {73--88},
     publisher = {Association des Annales de l{\textquoteright}institut Fourier},
     volume = {46},
     number = {1},
     year = {1996},
     doi = {10.5802/aif.1507},
     zbl = {0845.14026},
     mrnumber = {97b:14047},
     language = {en},
     url = {https://aif.centre-mersenne.org/articles/10.5802/aif.1507/}
}
TY  - JOUR
AU  - Xiao, Gang
TI  - Galois covers between $K3$ surfaces
JO  - Annales de l'Institut Fourier
PY  - 1996
SP  - 73
EP  - 88
VL  - 46
IS  - 1
PB  - Association des Annales de l’institut Fourier
UR  - https://aif.centre-mersenne.org/articles/10.5802/aif.1507/
DO  - 10.5802/aif.1507
LA  - en
ID  - AIF_1996__46_1_73_0
ER  - 
%0 Journal Article
%A Xiao, Gang
%T Galois covers between $K3$ surfaces
%J Annales de l'Institut Fourier
%D 1996
%P 73-88
%V 46
%N 1
%I Association des Annales de l’institut Fourier
%U https://aif.centre-mersenne.org/articles/10.5802/aif.1507/
%R 10.5802/aif.1507
%G en
%F AIF_1996__46_1_73_0
Xiao, Gang. Galois covers between $K3$ surfaces. Annales de l'Institut Fourier, Tome 46 (1996) no. 1, pp. 73-88. doi : 10.5802/aif.1507. https://aif.centre-mersenne.org/articles/10.5802/aif.1507/

[D] I. Dolgachev, Integral quadratic forms : applications to algebraic geometry, Seminaire Bourbaki, 611 (1983). | Numdam | MR | Zbl

[M] S. Mukai, Finite groups of automorphisms of K3 surfaces and the Mathieu group, Invent. Math., 94 (1988), 183-221. | MR | Zbl

[N] V.V. Nikulin, Finite automorphism groups of Kähler K3 surfaces, Trans. Moscow Math. Soc., 38 (1980), 71-137. | Zbl

Cité par Sources :