Le but de cet article est d’établir des congruences entre d’une part certaines formes modulaires paraboliques primitives de niveau et de poids plus grand que 2 et d’autre part les formes modulaires de niveau et de poids 2, tordues par une puissance de l’opérateur . On sait a priori qu’il y a de telles congruences; la nouveauté ici est qu’on peut lire le caractère de la forme de poids 2 et la puissance de sur la pente de la forme de poids supérieur, i.e., sur la valuation de sa valeur propre pour l’opérateur . Curieusement, on trouve aussi un lien entre les termes dominants des développements -adiques des valeurs propres de sur les deux formes. À partir de ceci, on détermine la restriction à un sous-groupe de décomposition en de la représentation galoisienne attachée à la forme de poids plus grand que 2.
Our aim in this paper is to prove congruences between on the one hand certain eigenforms of level and weight greater than 2 and on the other hand twists of eigenforms of level and weight 2. One knows a priori that such congruences exist; the novelty here is that we determine the character of the form of weight 2 and the twist in terms of the slope of the higher weight form, i.e., in terms of the valuation of its eigenvalue for . Curiously, we also find a relation between the leading terms of the -adic expansions of the eigenvalues for of the two forms. This allows us to determine the restriction to the decomposition group at of the Galois representation modulo attached to the higher weight form.
@article{AIF_1996__46_1_1_0, author = {Ulmer, Douglas L.}, title = {Slopes of modular forms and congruences}, journal = {Annales de l'Institut Fourier}, pages = {1--32}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, volume = {46}, number = {1}, year = {1996}, doi = {10.5802/aif.1504}, zbl = {0834.11024}, mrnumber = {97i:11046a}, language = {en}, url = {https://aif.centre-mersenne.org/articles/10.5802/aif.1504/} }
TY - JOUR AU - Ulmer, Douglas L. TI - Slopes of modular forms and congruences JO - Annales de l'Institut Fourier PY - 1996 SP - 1 EP - 32 VL - 46 IS - 1 PB - Association des Annales de l’institut Fourier UR - https://aif.centre-mersenne.org/articles/10.5802/aif.1504/ DO - 10.5802/aif.1504 LA - en ID - AIF_1996__46_1_1_0 ER -
%0 Journal Article %A Ulmer, Douglas L. %T Slopes of modular forms and congruences %J Annales de l'Institut Fourier %D 1996 %P 1-32 %V 46 %N 1 %I Association des Annales de l’institut Fourier %U https://aif.centre-mersenne.org/articles/10.5802/aif.1504/ %R 10.5802/aif.1504 %G en %F AIF_1996__46_1_1_0
Ulmer, Douglas L. Slopes of modular forms and congruences. Annales de l'Institut Fourier, Tome 46 (1996) no. 1, pp. 1-32. doi : 10.5802/aif.1504. https://aif.centre-mersenne.org/articles/10.5802/aif.1504/
[D] Formes modulaires et représentations l-adiques, in: Séminaire Bourbaki 1968/1969 (Lect. Notes in Math. 179) 139-172, Berlin-Heidelberg-New York, Springer, 1969. | Numdam | Zbl
,[DR] Les schémas de modules de courbes elliptiques, in : W. Kuyk and P. Deligne (Eds.) Modular Functions of One Variable II (Lect. Notes in Math. 349) 143-316, Berlin-Heidelberg-New York, Springer, 1973. | MR | Zbl
and ,[Di] The refined conjecture of Serre, To appear in the proceedings of a conference on elliptic curves, Hong Kong, December 1993. | Zbl
,[E] The weight in Serre's conjectures on modular forms, Invent. Math., 109 (1992), 563-594. | MR | Zbl
,[GiMe] Cycles classes and Riemann-Roch for crystalline cohomology, Duke Math. J., 55 (1987), 501-538. | MR | Zbl
and ,[G] A tameness criterion for Galois representations associated to modular forms (mod p), Duke Math. J., 61 (1990), 445-517. | MR | Zbl
,[I] Finiteness, duality, and Künneth theorems in the cohomology of the deRham Witt complex, in : M. Raynaud and T. Shiota (eds.) Algebraic Geometry Tokyo-Kyoto (Lect. Notes in Math. 1016) 20-72, Berlin-Heidelberg-New York, Springer, 1982. | MR | Zbl
,[KM] Arithmetic Moduli of Elliptic Curves, Princeton, Princeton University Press, 1985. | MR | Zbl
and ,[KMe] Some consequences of the Riemann hypothesis for varieties over finite fields, Invent. Math., 23 (1974), 73-77. | MR | Zbl
and ,[MW] Class fields of abelian extensions of Q, Invent. Math., 76 (1984), 179-330. | MR | Zbl
and ,[Ri] Report on mod l representations of Gal(Q/Q), In : U. Jannsen, S. Kleiman, J.-P. Serre (eds.), Motives (Proceedings of Symposia in Pure Mathematics 55, part 2, 639-676, Providence, American Mathematical Society, 1994. | MR | Zbl
,[Sc] Motives for modular forms, Invent. Math., 100 (1990), 419-430. | MR | Zbl
,[S] Groupes Algébriques et Corps de Classes, Paris, Hermann, 1959. | MR | Zbl
,[Sh] Introduction to the Arithmetic Theory of Automorphic Functions, Princeton, Princeton University Press, 1971. | Zbl
,[U1] L-functions of universal elliptic curves over Igusa curves, Amer. J. Math., 112 (1990), 687-712. | MR | Zbl
,[U2] On the Fourier coefficients of modular forms, Ann. Sci. Ec. Norm. Sup., 28 (1995), 129-160. | Numdam | MR | Zbl
,[U3] On the Fourier coefficients of modular forms II, Math. Annalen, 304 (1996), 363-422. | MR | Zbl
,Cité par Sources :