Random walks on the affine group of local fields and of homogeneous trees
Annales de l'Institut Fourier, Tome 44 (1994) no. 4, pp. 1243-1288.

Le groupe affine d’un corps local 𝔉 agit sur l’arbre 𝕋(𝔉) (l’immeuble de Bruhat-Tits de GL (2,𝔉)) en ayant un point fixe dans l’espace des bouts 𝕋(F). Plus généralement, nous définissons le groupe affine Aff(𝔉) d’un arbre homogène 𝕋 comme le groupe de tous les automorphismes de 𝕋 ayant un point fixe commun dans 𝕋, et établissons les principales propriétés asymptotiques des produits aléatoires dans Aff(𝔉) : (1) la loi des grands nombres et le théorème limite central; (2) la convergence vers 𝕋 et l’existence d’une solution au problème de Dirichlet à l’infini; (3) l’identification de la frontière de Poisson avec 𝕋 donnant une description de l’espace des fonctions μ-harmoniques bornées. Les méthodes utilisées sont étroitement reliées aux propriétés géométriques des arbres homogènes analogues à celles des espaces symétriques de rang un.

The affine group of a local field acts on the tree 𝕋(𝔉) (the Bruhat-Tits building of GL (2,𝔉)) with a fixed point in the space of ends 𝕋(F). More generally, we define the affine group Aff(𝔉) of any homogeneous tree 𝕋 as the group of all automorphisms of 𝕋 with a common fixed point in 𝕋, and establish main asymptotic properties of random products in Aff(𝔉): (1) law of large numbers and central limit theorem; (2) convergence to 𝕋 and solvability of the Dirichlet problem at infinity; (3) identification of the Poisson boundary with 𝕋, which gives a description of the space of bounded μ-harmonic functions. Our methods strongly rely on geometric properties of homogeneous trees as discrete counterparts of rank one symmetric spaces.

@article{AIF_1994__44_4_1243_0,
     author = {Cartwright, Donald I. and Kaimanovich, Vadim A. and Woess, Wolfgang},
     title = {Random walks on the affine group of local fields and of homogeneous trees},
     journal = {Annales de l'Institut Fourier},
     pages = {1243--1288},
     publisher = {Association des Annales de l{\textquoteright}institut Fourier},
     volume = {44},
     number = {4},
     year = {1994},
     doi = {10.5802/aif.1433},
     zbl = {0809.60010},
     mrnumber = {96f:60121},
     language = {en},
     url = {https://aif.centre-mersenne.org/articles/10.5802/aif.1433/}
}
TY  - JOUR
AU  - Cartwright, Donald I.
AU  - Kaimanovich, Vadim A.
AU  - Woess, Wolfgang
TI  - Random walks on the affine group of local fields and of homogeneous trees
JO  - Annales de l'Institut Fourier
PY  - 1994
SP  - 1243
EP  - 1288
VL  - 44
IS  - 4
PB  - Association des Annales de l’institut Fourier
UR  - https://aif.centre-mersenne.org/articles/10.5802/aif.1433/
DO  - 10.5802/aif.1433
LA  - en
ID  - AIF_1994__44_4_1243_0
ER  - 
%0 Journal Article
%A Cartwright, Donald I.
%A Kaimanovich, Vadim A.
%A Woess, Wolfgang
%T Random walks on the affine group of local fields and of homogeneous trees
%J Annales de l'Institut Fourier
%D 1994
%P 1243-1288
%V 44
%N 4
%I Association des Annales de l’institut Fourier
%U https://aif.centre-mersenne.org/articles/10.5802/aif.1433/
%R 10.5802/aif.1433
%G en
%F AIF_1994__44_4_1243_0
Cartwright, Donald I.; Kaimanovich, Vadim A.; Woess, Wolfgang. Random walks on the affine group of local fields and of homogeneous trees. Annales de l'Institut Fourier, Tome 44 (1994) no. 4, pp. 1243-1288. doi : 10.5802/aif.1433. https://aif.centre-mersenne.org/articles/10.5802/aif.1433/

[Az] R. Azencott, Espaces de Poisson des Groupes Localement Compacts, Lect. Notes in Math., 148, Springer Berlin, 1970. | MR | Zbl

[Be] A.F. Beardon, The Geometry of Discrete Groups, Springer New York, 1983. | MR | Zbl

[Bi] P. Billingsley, Convergence of Probability Measures, Wiley, New York, 1968. | MR | Zbl

[CS] D.I. Cartwright and P.M. Soardi, Convergence to ends for random walks on the automorphism group of a tree, Proc. Amer. Math. Soc., 107 (1989), 817-823. | MR | Zbl

[Ca] J.W.S. Cassels, Local Fields, Cambridge University Press, Cambridge, 1986. | MR | Zbl

[Ch] F. Choucroun, Arbres, espaces ultramétriques, et bases de structure uniforme, Groupes d'Automorphismes d'Arbres, Thèse, Univ. Paris-Sud, 1993, p. 173-177.

[De] Y. Derriennic, Quelques applications du théorème ergodique sous-additif, Astérisque, 74 (1980), 183-201. | MR | Zbl

[E1] L. Élie, Étude du renouvellement sur le groupe affine de la droite réelle, Ann. Sci. Univ. Clermont, 65 (1977), 47-62. | Numdam | MR | Zbl

[E2] L. Élie, Fonctions harmoniques positives sur le groupe affine, Probability Measures on Groups (H. Heyer, ed.), Lect. Notes in Math., 706, Springer, Berlin, 1978, 96-110. | MR | Zbl

[E3] L. Élie, Comportement asymptotique du noyau potentiel sur les groupes de Lie, Annales Éc. Norm. Sup., 15 (1982), 257-364. | Numdam | MR | Zbl

[Fe] W. Feller, An Introduction to Probability Theory and its Applications, Vol II, Wiley, New York, 1966. | MR | Zbl

[Fi] A. Figà-Talamanca, An example in finite harmonic analysis with application to diffusion in compact ultrametric spaces, preprint, Univ. Roma "La Sapienza", 1992.

[FN] A. Figà-Talamanca and C. Nebbia, Harmonic analysis and representation theory for groups acting on homogeneous trees, Cambridge Univ. Press, 1991.

[Fu] H. Furstenberg, Random walks and discrete subgroups of Lie groups, Advances in Probability and Related Topics, Vol. I (P. Ney, ed.), M. Dekker, New York, 1971, p. 1-63. | MR | Zbl

[Ge] P. Gérardin, Harmonic functions on buildings of reductive split groups, Operator Algebras and Group Representations 1, Pitman, Boston, 1984, p. 208-221. | MR | Zbl

[Gre] U. Grenander, Stochastic groups, Ark. Mat., 4 (1961), 189-207. | MR | Zbl

[G1] A.K. Grincevičjus, A central limit theorem for the group of linear transformations of the real axis, Soviet Math. Doklady, 15 (1974), 1512-1515. | Zbl

[G2] A.K. Grincevičjus, Limit theorems for products of random linear transformations of a straight line (in Russian), Lithuanian Math. J., 15 (1975), 61-77. | MR | Zbl

[Gro] M. Gromov, Hyperbolic groups, Essays in Group Theory (S.M. Gersten, ed.), Math. Sci. Res. Inst. Publ., 8, Springer, New York, 1987, 75-263. | MR | Zbl

[Gui] F. Guimier, Simplicité du spectre de Liapounoff d'un produit de matrices aléatoires sur un corps ultramétrique, C. R. Acad. Sc. Paris, 309 (1989), 885-888. | MR | Zbl

[Gu] Y. Guivarc'H, Sur la loi des grands nombres et le rayon spectral d'une marche aléatoire, Astérisque, 74 (1980), 47-98. | MR | Zbl

[GKR] Y. Guivarc'H, M. Keane and B. Roynette, Marches Aléatoires sur les Groupes de Lie, Lecture Notes in Math., 624, Springer Berlin-Heidelberg-New York, 1977. | MR | Zbl

[dH] P. De La Harpe, Free groups in linear groups, L'Enseignement Math., 29 (1983), 129-144. | MR | Zbl

[K1] V.A. Kaimanovich, An entropy criterion for maximality of the boundary of random walks on discrete groups, Soviet Math. Doklady, 31 (1985), 193-197. | MR | Zbl

[K2] V.A. Kaimanovich, Lyapunov exponents, symmetric spaces and multiplicative ergodic theorem for semi-simple Lie groups, J. Soviet Math., 47 (1989), 2387-2398. | MR | Zbl

[K3] V.A. Kaimanovich, Poisson boundaries of random walks on discrete solvable groups, Probability Measures on Groups X (H. Heyer, ed.), Plenum Press, New York, 1991, p. 205-238. | MR | Zbl

[K4] V.A. Kaimanovich, Measure-theoretic boundaries of Markov chains, 0-2 laws and entropy, Harmonic Analysis and Discrete Potential Theory (M.A. Picardello, ed.), Plenum Press, New York, 1992, p. 145-180.

[K5] V.A. Kaimanovich, Boundaries of random walks revisited, in preparation, Univ. Edinburgh.

[Ki] J.F.C. Kingman, The ergodic theory of subadditive processes, J. Royal Stat. Soc., Ser. B, 30 (1968), 499-510. | MR | Zbl

[Ma] G.A. Margulis, Discrete Subgroups of Semisimple Lie Groups (Erg. Math. Grenzgeb., 3. Folge, Band 17), Springer, New York, 1989.

[Mo] S.A. Molchanov, Martin boundaries for invariant Markov processes on a solvable group, Theory of Probability and Appl., 12 (1967), 310-314. | Zbl

[Ne] C. Nebbia, On the amenability and the Kunze-Stein property for groups acting on a tree, Pacific J. Math., 135 (1988), 371-380. | MR | Zbl

[Rag] M.S. Raghunathan, A proof of Oseledec's multiplicative ergodic theorem, Israel J. Math., 32 (1979), 356-362. | MR | Zbl

[Rau] A. Raugi, Fonctions harmoniques et théorèmes limites pour les marches aléatoires sur les groupes, Mém. Bull. Soc. Math. France, 54 (1977), 5-118. | Numdam

[Sch] G. Schlichting, Polynomidentitäten und Permutationsdarstellungen lokalkompakter Gruppen, Inventiones Math., 55 (1979), 97-106. | MR | Zbl

[S1] J.-P. Serre, Local Fields, Springer, New York, 1979.

[S2] J.-P. Serre, Trees, Springer, New York, 1980.

[Sp] F. Spitzer, Principles of Random Walk, (2nd ed.), Springer, New York, 1976. | MR | Zbl

[SW] P.M. Soardi and W. Woess, Amenability, unimodularity, and the spectral radius of random walks on infinite graphs, Math. Zeitschr., 205 (1990), 471-486. | MR | Zbl

[Ti] J. Tits, Sur le groupe des automorphismes d'un arbre, Essays in Topology and Related Topics (mémoires dédiés a G. de Rham), Springer, Berlin, 1970, p. 188-211. | MR | Zbl

[Tr] V.I. Trofimov, Automorphism groups of graphs as topological groups, Math. Notes, 38 (1985), 717-720. | MR | Zbl

[W1] W. Woess, Boundaries of random walks on graphs and groups with infinitely many ends, Israel J. Math., 68 (1989), 271-301. | MR | Zbl

[W2] W. Woess, Random walks on infinite graphs and groups: a survey on selected topics, Bull. London Math. Soc., 26 (1994), 1-60. | MR | Zbl

[W3] W. Woess, The Martin boundary of random walks on the automorphism group of a homogeneous tree, print Univ. Milano.

Cité par Sources :