Analytic potential theory over the p-adics
Annales de l'Institut Fourier, Tome 43 (1993) no. 4, pp. 905-944.

Sur un corps non-archimédien, la valeur absolue élevée à une puissance α>0 arbitraire est une fonction définie négative et engendre (l’analogue d’un) un processus stable symétrique. Pour α(0,1) ce processus est transitoire et nous développons sa théorie du potentiel purement analytiquement et de manière explicite, en insistant sur la particularité résultant de la situation non-archimédienne. Par exemple, l’inégalité de Harnack devient une égalité.

Over a non-archimedean local field the absolute value, raised to any positive power α>0, is a negative definite function and generates (the analogue of) the symmetric stable process. For α(0,1), this process is transient with potential operator given by M. Riesz’ kernel. We develop this potential theory purely analytically and in an explicit manner, obtaining special features afforded by the non-archimedean setting ; e.g. Harnack’s inequality becomes an equality.

@article{AIF_1993__43_4_905_0,
     author = {Haran, Shai},
     title = {Analytic potential theory over the $p$-adics},
     journal = {Annales de l'Institut Fourier},
     pages = {905--944},
     publisher = {Institut Fourier},
     address = {Grenoble},
     volume = {43},
     number = {4},
     year = {1993},
     doi = {10.5802/aif.1361},
     zbl = {0847.31006},
     mrnumber = {95c:11141},
     language = {en},
     url = {https://aif.centre-mersenne.org/articles/10.5802/aif.1361/}
}
TY  - JOUR
AU  - Haran, Shai
TI  - Analytic potential theory over the $p$-adics
JO  - Annales de l'Institut Fourier
PY  - 1993
SP  - 905
EP  - 944
VL  - 43
IS  - 4
PB  - Institut Fourier
PP  - Grenoble
UR  - https://aif.centre-mersenne.org/articles/10.5802/aif.1361/
DO  - 10.5802/aif.1361
LA  - en
ID  - AIF_1993__43_4_905_0
ER  - 
%0 Journal Article
%A Haran, Shai
%T Analytic potential theory over the $p$-adics
%J Annales de l'Institut Fourier
%D 1993
%P 905-944
%V 43
%N 4
%I Institut Fourier
%C Grenoble
%U https://aif.centre-mersenne.org/articles/10.5802/aif.1361/
%R 10.5802/aif.1361
%G en
%F AIF_1993__43_4_905_0
Haran, Shai. Analytic potential theory over the $p$-adics. Annales de l'Institut Fourier, Tome 43 (1993) no. 4, pp. 905-944. doi : 10.5802/aif.1361. https://aif.centre-mersenne.org/articles/10.5802/aif.1361/

[1] C. Berg, G. Forst, Potential theory on locally compact abelian groups, Ergebn. d. Math., 87, Springer-Verlag (1975). | MR | Zbl

[2] J. Bliedtner, W. Hansen, Potential theory, Universitext, Springer-Verlag (1986). | Zbl

[3] J.W.S. Cassels, A. Fröhlich, Algebraic number theory, Thompson, 1967. | Zbl

[4] W. Feller, An introduction to probability theory and its applications, Vol. II, John Wiley & Sons, 1970.

[5] S. Haran, Riesz potentials and explicit sums in arithmetic, Inventiones Math., 101 (1990), 697-703. | MR | Zbl

[6] S. Haran, Index theory, potential theory and the Riemann hypothesis, in Proc. LMS Symp. on L-functions and Arithmetic, Durham, 1989. | Zbl

[7] G.A. Hunt, Markoff processes and potentials I-III, Illinois J. Math., 1 (1957), 44-93 and 316-369 ; 2 (1958), 151-213. | Zbl

[8] N.S. Landkof, Foundations of modern potential theory, Grundl. d. math. Wiss., 180, Springer-Verlag (1972). | MR | Zbl

[9] S.C. Port, C.J. Stone, Infinitely divisible processes and their potential theory I-II, Ann. Inst. Fourier, 21-2 (1971), 157-275 ; 21-4 (1971), 179-265. | Numdam | MR | Zbl

[10] M. Taibleson, Fourier analysis over local fields, Princeton Univ. Press, 1975. | MR | Zbl

[11] A. Weil, Fonction zêta et distributions, séminaire Bourbaki (1966), 312. | EuDML | Numdam | MR | Zbl

Cité par Sources :