On démontre que l’obstruction à approcher une fonction , dont le lieu de zéro est un ensemble algébrique ou analytique (défini par des équations globables), par des fonctions régulières ayant les mêmes zéros, est seulement la signature sur le complémentaire de .
For a function (where is a real algebraic manifold) the following problem is studied. If is an algebraic subvariety of , can be approximated by rational regular functions such that
We find that this is possible if and only if there exists a rational regular function such that and g(x) for any in . Similar results are obtained also in the analytic and in the Nash cases.
For non approximable functions the minimal flatness locus is also studied.
@article{AIF_1989__39_3_611_0, author = {Broglia, F. and Tognoli, A.}, title = {Approximation of $C^\infty $-functions without changing their zero-set}, journal = {Annales de l'Institut Fourier}, pages = {611--632}, publisher = {Institut Fourier}, address = {Grenoble}, volume = {39}, number = {3}, year = {1989}, doi = {10.5802/aif.1178}, zbl = {0673.14017}, mrnumber = {90k:32023}, language = {en}, url = {https://aif.centre-mersenne.org/articles/10.5802/aif.1178/} }
TY - JOUR AU - Broglia, F. AU - Tognoli, A. TI - Approximation of $C^\infty $-functions without changing their zero-set JO - Annales de l'Institut Fourier PY - 1989 SP - 611 EP - 632 VL - 39 IS - 3 PB - Institut Fourier PP - Grenoble UR - https://aif.centre-mersenne.org/articles/10.5802/aif.1178/ DO - 10.5802/aif.1178 LA - en ID - AIF_1989__39_3_611_0 ER -
%0 Journal Article %A Broglia, F. %A Tognoli, A. %T Approximation of $C^\infty $-functions without changing their zero-set %J Annales de l'Institut Fourier %D 1989 %P 611-632 %V 39 %N 3 %I Institut Fourier %C Grenoble %U https://aif.centre-mersenne.org/articles/10.5802/aif.1178/ %R 10.5802/aif.1178 %G en %F AIF_1989__39_3_611_0
Broglia, F.; Tognoli, A. Approximation of $C^\infty $-functions without changing their zero-set. Annales de l'Institut Fourier, Tome 39 (1989) no. 3, pp. 611-632. doi : 10.5802/aif.1178. https://aif.centre-mersenne.org/articles/10.5802/aif.1178/
[ABrT] An embedding theorem for real analytic spaces, Ann. S.N.S. Pisa, Serie IV, Vol VI, n.3 (1979), 415-426. | EuDML | Numdam | MR | Zbl
, , ,[BeT] Teoremi di approssimazione in topologia differenziale I, Boll. U.M.I., (5) 14-B (1977), 866-887. | MR | Zbl
, ,[BiM] Arc-analytic functions, to appear. | Zbl
, ,[BocCC-R] Géométrie algébrique réelle, Erg. d. Math.12, Springer, 1987. | MR | Zbl
, , ,[BorH] La classe d'homologie fondamentale d'un espace analytique, Bull. Soc. Math. France, 89 (1961), 461-513. | EuDML | Numdam | MR | Zbl
, ,[BrL] Differentiable germs and catastrophes, Cambridge Univ. Press, 1975. | Zbl
, ,[Hiro] Resolution of singularities of an algebraic variety over a field of characteristic zero, Ann. of Math., 79 (1964), 109-324. | MR | Zbl
,[Hirs] Differential topology, Springer, 1976. | Zbl
,[LT] Alcune proprietà degli spazi algebrici, Ann. S.N.S. Pisa, 24 (1970), 597-632. | EuDML | Numdam | MR | Zbl
, ,[M] Sur les fonctions différentiables et les ensembles analytiques, Bull. Soc. Math. France, (1963), 113-127. | EuDML | Numdam | MR | Zbl
,[N1] Introduction to the theory of analytic spaces, Lectures Notes in Math., Vol 25, Springer, 1966. | MR | Zbl
,[N2] Analysis on real and complex manifolds, Masson & Cie, Paris, 1968. | MR | Zbl
,[T1] Sulla classifizione dei fibrati analitici reali, Ann. S.N.S. Pisa, 21 (4) (1967), 709-744. | EuDML | Numdam | MR | Zbl
,[T2] Su una congettura di Nash, Ann. S.N.S. Pisa, 27 (4) (1973), 167-185. | EuDML | Numdam | MR | Zbl
,[T3] Un teorema di approssimazione relativo, Atti Accad. Naz. Lincei Rend., (8) 40 (1973), 496-502. | Zbl
,[T4] Algebraic geometry and Nash function, Institutiones Math., Vol 3, London, New York, Academic Press, 1978. | MR | Zbl
,[T5] Algebraic approximation of manifolds and spaces, Sém Bourbaki, n. 548 (1979/1980). | EuDML | Numdam | Zbl
,Cité par Sources :