Soit une surface -analytique, compacte, lisse, sans diviseurs, et un fibré vectoriel holomorphe de rang 2 sur . Le fibré projectif associé, , n’aura pas de diviseurs si et seulement si est “fortement” irréductible. On prouve l’existence de tels fibrés.
Let be a compact complex nonsingular surface without curves, and a holomorphic vector bundle of rank 2 on . It turns out that the associated projective bundle has no divisors if and only if is “strongly” irreducible. Using the results concerning irreducible bundles of [Banica-Le Potier, J. Crelle, 378 (1987), 1-31] and [Elencwajg- Forster, Annales Inst. Fourier, 32-4 (1982), 25-51] we give a proof of existence for bundles which are strongly irreducible.
@article{AIF_1989__39_1_239_0, author = {Toma, Matei}, title = {A class of non-algebraic threefolds}, journal = {Annales de l'Institut Fourier}, pages = {239--250}, publisher = {Institut Fourier}, address = {Grenoble}, volume = {39}, number = {1}, year = {1989}, doi = {10.5802/aif.1166}, zbl = {0659.32024}, mrnumber = {90k:32084}, language = {en}, url = {https://aif.centre-mersenne.org/articles/10.5802/aif.1166/} }
TY - JOUR AU - Toma, Matei TI - A class of non-algebraic threefolds JO - Annales de l'Institut Fourier PY - 1989 SP - 239 EP - 250 VL - 39 IS - 1 PB - Institut Fourier PP - Grenoble UR - https://aif.centre-mersenne.org/articles/10.5802/aif.1166/ DO - 10.5802/aif.1166 LA - en ID - AIF_1989__39_1_239_0 ER -
Toma, Matei. A class of non-algebraic threefolds. Annales de l'Institut Fourier, Tome 39 (1989) no. 1, pp. 239-250. doi : 10.5802/aif.1166. https://aif.centre-mersenne.org/articles/10.5802/aif.1166/
[1] Sur l'existence des fibrés vectoriels holomorphes sur les surfaces non-algébriques, J. reine angew. Math., 378 (1987), 1-31. | MR | Zbl
& ,[2] Compact complex surfaces, Berlin-Heidelberg-New York, 1984. | MR | Zbl
, & ,[3] Vector bundles on manifolds without divisors and a theorem on deformations, Ann. Inst. Fourier, 32-4 (1982), 25-51. | Numdam | MR | Zbl
& ,[4] Complex Analytic Geometry, LNM 538, Berlin-Heidelberg-New York, 1976. | MR | Zbl
,[5] Coherent analytic sheaves, Berlin-Heidelberg-New-York, 1984. | MR | Zbl
& , ,Cité par Sources :