Soit un groupe libre avec générateurs. On construit une série des représentations uniformément bornées de qui opèrent sur un espace de Hilbert commun. Les représentations sont irréductibles et dépendent analytiquement d’un paramètre complexe tel que . Pour réel ou les sont unitaires; autrement ne sont pas unitarisables. Pour les différences sont des opérateurs compacts.
Let be a free group on generators. We construct the series of uniformly bounded representations of acting on the common Hilbert space, depending analytically on the complex parameter z, , such that each representation is irreducible. If is real or then is unitary; in other cases cannot be made unitary. For representations and are congruent modulo compact operators.
@article{AIF_1988__38_1_87_0, author = {Szwarc, Ryszard}, title = {An analytic series of irreducible representations of the free group}, journal = {Annales de l'Institut Fourier}, pages = {87--110}, publisher = {Institut Fourier}, address = {Grenoble}, volume = {38}, number = {1}, year = {1988}, doi = {10.5802/aif.1124}, zbl = {0634.22003}, mrnumber = {89j:22023}, language = {en}, url = {https://aif.centre-mersenne.org/articles/10.5802/aif.1124/} }
TY - JOUR AU - Szwarc, Ryszard TI - An analytic series of irreducible representations of the free group JO - Annales de l'Institut Fourier PY - 1988 SP - 87 EP - 110 VL - 38 IS - 1 PB - Institut Fourier PP - Grenoble UR - https://aif.centre-mersenne.org/articles/10.5802/aif.1124/ DO - 10.5802/aif.1124 LA - en ID - AIF_1988__38_1_87_0 ER -
%0 Journal Article %A Szwarc, Ryszard %T An analytic series of irreducible representations of the free group %J Annales de l'Institut Fourier %D 1988 %P 87-110 %V 38 %N 1 %I Institut Fourier %C Grenoble %U https://aif.centre-mersenne.org/articles/10.5802/aif.1124/ %R 10.5802/aif.1124 %G en %F AIF_1988__38_1_87_0
Szwarc, Ryszard. An analytic series of irreducible representations of the free group. Annales de l'Institut Fourier, Tome 38 (1988) no. 1, pp. 87-110. doi : 10.5802/aif.1124. https://aif.centre-mersenne.org/articles/10.5802/aif.1124/
[1] Harmonic analysis on trees, Proc. Sympos. Pure Math. Amer. Math. Soc., 26 (1972), 419-424. | MR | Zbl
,[2] Operator norms on free groups, Boll. Un. Math. Ital., 1-B (1982), 1055-1065. | MR | Zbl
,[3] The Chern character in K-homology, preprint.
,[4] Spherical functions and harmonic analysis on free groups, J. Funct. Anal., 47 (1982), 281-304. | MR | Zbl
, ,[5] Harmonic analysis on free groups, Lecture Notes in Pure Appl. Math., M. Dekker, New York 1983. | Zbl
, ,[6] An example of a non-nuclear C*-algebra which has the metric approximation property, Invent. Math., 50 (1979), 279-293. | MR | Zbl
,[7] Uniformly bounded representations and harmonic analysis of the 2 x 2 real unimodular group, Amer. J. Math., 82 (1960), 1-62. | MR | Zbl
, ,[8] The Poisson transform on free groups and uniformly bounded representations, J. Funct. Anal., 47 (1983), 372-400. | MR | Zbl
, ,[9] K-groups of reduced crossed products by free groups, J. Oper. Theory, 8 (1982), 131-156. | MR | Zbl
, ,[10] Radial functions on free groups and a decomposition of the regular representation into irreducible components, J. Reine Angew. Math., 326 (1981), 124-135. | MR | Zbl
,[11] An analytic family of uniformly bounded representations of free groups, Acta Math., 157 (1986), 287-309. | MR | Zbl
, ,[12] Some remarks on unitary representations of the free group, Osaka Math. J., 3 (1951), 55-63. | MR | Zbl
,Cité par Sources :