Green functions and spectra on free products of cyclic groups
Annales de l'Institut Fourier, Tome 38 (1988) no. 1, pp. 59-85.

Les fonctions de Green d’un opérateur stochastique sur un produit de groupes cycliques sont évaluées explicitement comme fonctions algébriques. Les spectres sont étudiés par l’argument de la théorie de Morse.

Green functions of a stochastic operator on a free product of cyclic groups are explicitly evaluated as algebraic functions. The spectra are investigated by Morse theoretic argument.

@article{AIF_1988__38_1_59_0,
     author = {Aomoto, K. and Kato, Y.},
     title = {Green functions and spectra on free products of cyclic groups},
     journal = {Annales de l'Institut Fourier},
     pages = {59--85},
     publisher = {Institut Fourier},
     address = {Grenoble},
     volume = {38},
     number = {1},
     year = {1988},
     doi = {10.5802/aif.1123},
     zbl = {0639.60008},
     mrnumber = {89m:58201},
     language = {en},
     url = {https://aif.centre-mersenne.org/articles/10.5802/aif.1123/}
}
TY  - JOUR
AU  - Aomoto, K.
AU  - Kato, Y.
TI  - Green functions and spectra on free products of cyclic groups
JO  - Annales de l'Institut Fourier
PY  - 1988
SP  - 59
EP  - 85
VL  - 38
IS  - 1
PB  - Institut Fourier
PP  - Grenoble
UR  - https://aif.centre-mersenne.org/articles/10.5802/aif.1123/
DO  - 10.5802/aif.1123
LA  - en
ID  - AIF_1988__38_1_59_0
ER  - 
%0 Journal Article
%A Aomoto, K.
%A Kato, Y.
%T Green functions and spectra on free products of cyclic groups
%J Annales de l'Institut Fourier
%D 1988
%P 59-85
%V 38
%N 1
%I Institut Fourier
%C Grenoble
%U https://aif.centre-mersenne.org/articles/10.5802/aif.1123/
%R 10.5802/aif.1123
%G en
%F AIF_1988__38_1_59_0
Aomoto, K.; Kato, Y. Green functions and spectra on free products of cyclic groups. Annales de l'Institut Fourier, Tome 38 (1988) no. 1, pp. 59-85. doi : 10.5802/aif.1123. https://aif.centre-mersenne.org/articles/10.5802/aif.1123/

[A1] K. Aomoto, Spectral theory on a free group and algebraic curves, J. Fac. Sci. Univ. Tokyo Sect. IA Math., 31 (1985), 297-317. | MR | Zbl

[A2] K. Aomoto, A formula of eigen-function expansions. Case of asymptotic trees, Proc. Japan Acad. Ser. A Math. Sci., 61 (1985), 11-14. | MR | Zbl

[C] D.I. Cartwright & P. M. Soardi, Random walks on free products, quotients and amalgams, Nagoya Math. J., 102 (1986), 163-180. | MR | Zbl

[F1] A. Figà-Talamanca & M.A. Picardello, Harmonic analysis on free groups, Lecture Notes in Pure and Appl. Math. 87, Dekker, New York, 1983. | MR | Zbl

(F2) U. Fulton, Introduction to intersection theory in algebraic geometry, Regional Conf. in Math. 54, Amer. Math. Soc., Providence, 1983. | Zbl

[H1] W.V.D. Hodge & D. Pedoe, Methods of algebraic geometry, Cambridge Univ. Press, London, 1951.

[H2] M. Hashizume, Canonical representations and Fock representations of free groups, preprint, 1984.

[I1] A. Iozzi & M.A. Picardello, Spherical functions on symmetric graphs, Lecture Notes in Math. 992, Springer, Berlin-New York, 1982. | Zbl

[I2] A. Iozzi & M.A. Picardello, Graphs and convolution operators, Topics in Modern Harmonic Analysis, Turin, Milan, 1982. | Zbl

[K] Ts. Kajiwara, On irreducible decompositions of the regular representations of free groups, Boll. Un. Mat. Ital. A, 4 (1985), 425-431. | MR | Zbl

[M1] A.M. Mantero & A. Zappa, The Poisson transform and representations of a free group, J. Funct. Anal., 51 (1983), 373-399. | MR | Zbl

[M2] J. Milnor, Singular points of complex hypersurfaces, Ann. of Math. Stud. 61, Princeton Univ. Press, Princeton, 1968. | MR | Zbl

[P] M. Picardello & W. Woess, Random walks on amalgams, Monatsh. Math., 100 (1985), 21-33. | MR | Zbl

[S1] T. Steger, Harmonic analysis for an anisotropic random walk on a homogeneous tree, thesis, Washington Univ., St. Louis, 1985.

[S2] G. Szegö, Orthogonal polynomials, Amer. Math. Sc. Collq. 23, Amer. Math. Soc., Providence, 1939. | Zbl

[T] M. Toda, Theory of non-linear lattices, Ser. Solid-State Sci. 20, Springer, Berlin-New York, 1981. | MR | Zbl

Cité par Sources :