Nous considérons l’ensemble des homomorphismes à valeurs complexes d’une algèbre uniforme qui sont faiblement continus par rapport à une mesure prédéterminée . Nous définissons les -parties de et nous obtenons un théorème de décomposition pour les mesures dans tel que les éléments de la somme soient mutuellement absolument continus par rapport aux mesures représentatives. L’ensemble est étudié pour les algèbres -invariantes définies sur les sous-ensembles compacts du plan complexe ou encore pour l’algèbre du polydisque infini.
We consider the set of complex-valued homomorphisms of a uniform algebra which are weak-star continuous with respect to a fixed measure . The -parts of are defined, and a decomposition theorem for measures in is obtained, in which constituent summands are mutually absolutely continuous with respect to representing measures. The set is studied for -invariant algebras on compact subsets of the complex plane and also for the infinite polydisc algebra.
@article{AIF_1985__35_1_149_0, author = {Cole, B. J. and Gamelin, Theodore W.}, title = {Weak-star continuous homomorphisms and a decomposition of orthogonal measures}, journal = {Annales de l'Institut Fourier}, pages = {149--189}, publisher = {Institut Fourier}, address = {Grenoble}, volume = {35}, number = {1}, year = {1985}, doi = {10.5802/aif.1004}, zbl = {0546.46042}, mrnumber = {86m:46051}, language = {en}, url = {https://aif.centre-mersenne.org/articles/10.5802/aif.1004/} }
TY - JOUR AU - Cole, B. J. AU - Gamelin, Theodore W. TI - Weak-star continuous homomorphisms and a decomposition of orthogonal measures JO - Annales de l'Institut Fourier PY - 1985 SP - 149 EP - 189 VL - 35 IS - 1 PB - Institut Fourier PP - Grenoble UR - https://aif.centre-mersenne.org/articles/10.5802/aif.1004/ DO - 10.5802/aif.1004 LA - en ID - AIF_1985__35_1_149_0 ER -
%0 Journal Article %A Cole, B. J. %A Gamelin, Theodore W. %T Weak-star continuous homomorphisms and a decomposition of orthogonal measures %J Annales de l'Institut Fourier %D 1985 %P 149-189 %V 35 %N 1 %I Institut Fourier %C Grenoble %U https://aif.centre-mersenne.org/articles/10.5802/aif.1004/ %R 10.5802/aif.1004 %G en %F AIF_1985__35_1_149_0
Cole, B. J.; Gamelin, Theodore W. Weak-star continuous homomorphisms and a decomposition of orthogonal measures. Annales de l'Institut Fourier, Tome 35 (1985) no. 1, pp. 149-189. doi : 10.5802/aif.1004. https://aif.centre-mersenne.org/articles/10.5802/aif.1004/
[1]An Invitation to C* Algebras, Springer-Verlag, 1976. | MR | Zbl
,[2]Abstract analytic function theory and Hardy algebras, Lecture Notes in Math., vol. 593, Springer-Verlag, 1977. | MR | Zbl
and ,[3]Introduction to Function Algebras, Benjamin, 1969. | MR | Zbl
,[4]Adhérence faible étoile d'algèbres de fractions rationnelles, Ann. Inst. Fourier, Grenoble, 24,4 (1974), 93-120. | Numdam | MR | Zbl
,[5]Tight uniform algebras, Journal of Functional Analysis, 46 (1982), 158-220. | MR | Zbl
and ,[6]Subnormal operators, Research Notes in Mathematics # 51, Pitman, 1981. | MR | Zbl
,[7]Spectral mapping theorems for subnormal operators, J. Funct. Anal., 56 (1984), 360-387. | MR | Zbl
,[8]Uniform Algebras, Prentice-Hall, 1969. | MR | Zbl
,[9]Rational Approximation Theory, course lecture notes, UCLA, 1975.
,[10]Uniform algebras on plane sets, in Approximation Theory, Academic Press, 1973, pp. 100-149. | MR | Zbl
,[11]Bounded approximation by rational functions, Pac. J. Math., 45 (1973), 129-150. | MR | Zbl
and ,[12]Recent results on function algebras, CBMS Regional Conference Series in Mathematics, vol. 11, Am. Math. Society, 1972. | MR | Zbl
,[13]Equivalence of certain representing measures, Proc. A.M.S., 82 (1981), 374-376. | MR | Zbl
,[14]Extension of positive weak*-continuous functionals, Duke Math. J., 34 (1967), 453-466. | MR | Zbl
and ,[15]The abstract F. and M Riesz theorem, Duke Math. J., 36 (1969), 791-797. | MR | Zbl
and ,[16]Finely holomorphic functions, J. Funct. Anal., 37 (1980), 1-18. | MR | Zbl
,[17]Weak-star density of polynomials, J. Reine Angew Math., 252 (1972), 1-15. | MR | Zbl
,Cité par Sources :