Soit un groupe localement compact, pour , soit l’adhérence de dans les opérateurs de convolution de . Désignons par le dual de qui est contenu dans l’espace des multiplicateurs ponctuels de l’espace de Figà-Talamanca Herz . On démontre que sur la sphère unité de , la topologie et la topologie forte, comme multiplicateurs de , coïncident.
Let be a locally compact group, for let denote the closure of in the convolution operators on . Denote the dual of which is contained in the space of pointwise multipliers of the Figa-Talamanca Herz space . It is shown that on the unit sphere of the topology and the strong -multiplier topology coincide.
@article{AIF_1985__35_1_125_0, author = {Fendler, Gero}, title = {An $L^p$-version of a theorem of {D.A.} {Raikov}}, journal = {Annales de l'Institut Fourier}, pages = {125--135}, publisher = {Institut Fourier}, address = {Grenoble}, volume = {35}, number = {1}, year = {1985}, doi = {10.5802/aif.1002}, zbl = {0543.43003}, mrnumber = {86h:43003}, language = {en}, url = {https://aif.centre-mersenne.org/articles/10.5802/aif.1002/} }
TY - JOUR AU - Fendler, Gero TI - An $L^p$-version of a theorem of D.A. Raikov JO - Annales de l'Institut Fourier PY - 1985 SP - 125 EP - 135 VL - 35 IS - 1 PB - Institut Fourier PP - Grenoble UR - https://aif.centre-mersenne.org/articles/10.5802/aif.1002/ DO - 10.5802/aif.1002 LA - en ID - AIF_1985__35_1_125_0 ER -
Fendler, Gero. An $L^p$-version of a theorem of D.A. Raikov. Annales de l'Institut Fourier, Tome 35 (1985) no. 1, pp. 125-135. doi : 10.5802/aif.1002. https://aif.centre-mersenne.org/articles/10.5802/aif.1002/
[1] The spaces Lp with mixed norm, Duke Math. J., 28 (1961), 301-324. | MR | Zbl
and ,[2] Numerical ranges of operators on normed spaces and of elements of normed algebras, London Math. Soc. Lecture Notes Series 2, Cambridge 1971. | MR | Zbl
and ,[3] An application of Littlewood-Paley theory in harmonic analysis, Math. Ann., 241 (1979), 83-69. | EuDML | MR | Zbl
,[4] On representations in Banach spaces, Math. Ann., 266 (1984), 307-315. | EuDML | MR | Zbl
and ,[5] Algèbres Ap et convoluteurs de Lp, Séminaire Bourbaki 22è année, 1969/1970, no. 367. | EuDML | Numdam | Zbl
,[6] An application of the Radon Nikodym property in harmonic analysis, Bollentino U.M.I., (5) 18-B (1981), 663-671. | MR | Zbl
,[7] On some topologies which coincide on the unit sphere of the Fourier-Stieltjes algebra B(G) and of the measure algebra M(G), Rocky Moutain J. of Math., 11 (1981), 459-472. | MR | Zbl
and ,[8] Une généralisation de la notion de transformée de Fourier-Stieltjes, Ann. Inst. Fourier, Grenoble, 24-3 (1974), 145-157. | EuDML | Numdam | MR | Zbl
,[9] Harmonic synthesis for subgroups, Ann. Inst. Fourier Grenoble, 23-3 (1973), 91-123. | EuDML | Numdam | MR | Zbl
,[10] An “alternierende Verfahen” for general positive operators, Bull. A.M.S., 68 (1962), 95-102. | MR | Zbl
,[11] Topics in harmonic analysis related to the Littlewood-Paley theorem, Princeton University Press, 1970. | Zbl
,Cité par Sources :