The Martin boundary of a free product of abelian groups
Annales de l'Institut Fourier, Volume 70 (2020) no. 1, pp. 313-373.

Given a probability measure μ on a finitely generated group Γ, its Martin boundary is a way to compactify Γ using the Green function of the corresponding random walk. It is known from the work of W. Woess that when a finitely supported random walk on a free product of abelian groups is adapted to the free product structure, the Martin boundary coincides with the geometric boundary. The main goal of this paper is to deal with non-adapted finitely supported random walks, for which there is no explicit formula for the Green function. Nevertheless, we show that the Martin boundary still coincides with the geometric boundary. We also prove that the Martin boundary is minimal.

Étant donné une mesure de probabilité sur un groupe de type fini Γ, on définit son bord de Martin qui donne une manière de compactifier Γ à l’aide de la fonction de Green associée. On sait depuis les travaux de W. Woess que le bord de Martin d’une marche aléatoire adaptée sur un produit libre de groupes abéliens coïncide avec le bord géométrique. Le but principal de cet article est d’étendre ce résultat aux marches à support fini qui ne sont pas adaptées. Il n’y a alors pas de formule explicite pour la fonction de Green, mais on montre encore que le bord de Martin coïncide avec le bord géométrique. On prouve au passage que le bord de Martin est minimal.

Received: 2017-09-29
Revised: 2018-12-06
Accepted: 2019-03-12
Published online: 2020-05-28
DOI: https://doi.org/10.5802/aif.3314
Classification: 05C81,  60B15,  31C35,  20F67
Keywords: random walk, free product, Martin boundary, harmonic function
@article{AIF_2020__70_1_313_0,
     author = {Dussaule, Matthieu},
     title = {The Martin boundary of a free product of abelian groups},
     journal = {Annales de l'Institut Fourier},
     publisher = {Association des Annales de l'institut Fourier},
     volume = {70},
     number = {1},
     year = {2020},
     pages = {313-373},
     doi = {10.5802/aif.3314},
     language = {en},
     url = {aif.centre-mersenne.org/item/AIF_2020__70_1_313_0/}
}
Dussaule, Matthieu. The Martin boundary of a free product of abelian groups. Annales de l'Institut Fourier, Volume 70 (2020) no. 1, pp. 313-373. doi : 10.5802/aif.3314. https://aif.centre-mersenne.org/item/AIF_2020__70_1_313_0/

[1] Alexopoulos, Georgios Random walks on discrete groups of polynomial volume growth, Ann. Probab., Volume 30 (2002), pp. 723-801 | MR 1905856 | Zbl 1023.60007

[2] Ancona, Alano Positive harmonic functions and hyperbolicity, Potential theory-surveys and problems (Lecture Notes in Mathematics) Volume 1344, Springer, 1988, pp. 1-23 | Article | MR 973878 | Zbl 0677.31006

[3] Ancona, Alano Théorie du potentiel sur les graphes et les variétés, École d’été de Probabilités de Saint-Flour XVIII (Lecture Notes in Mathematics) Volume 1427, Springer, 1990, pp. 1-112 | Zbl 1320.60134

[4] Babillot, Martine Théorie du renouvellement pour des chaînes semi-markoviennes transientes, Ann. Inst. Henri Poincaré, Probab. Stat., Volume 24 (1988) no. 4, pp. 507-569 | Numdam | MR 978023 | Zbl 0681.60095

[5] Billingsley, Patrick Convergence of Probability Measures, John Wiley & Sons, 1999 | Article | Zbl 0944.60003

[6] Birkhoff, Garrett Extension of Jentzsch’s theorem, Trans. Am. Math. Soc., Volume 85 (1957), pp. 219-227 | MR 87058 | Zbl 0079.13502

[7] Blachère, Sébastien; Brofferio, Sara Internal Diffusion Limited Aggregation on discrete groups having exponential growth, Probab. Theory Relat. Fields, Volume 137 (2007), pp. 323-343 | Article | MR 2278460 | Zbl 1106.60078

[8] Blachère, Sébastien; Haïssinsky, Peter; Mathieu, Pierre Harmonic measures versus quasiconformal measures for hyperbolic groups, Ann. Sci. Éc. Norm. Supér., Volume 44 (2011), pp. 683-721 | Article | Numdam | MR 2919980 | Zbl 1243.60005

[9] Bridson, Martin; Häfliger, André Metric Spaces of Non-Positive Curvature, Springer, 1999 | Article | Zbl 0988.53001

[10] Cartwright, Donald; Sawyer, Stanley The Martin boundary for general isotropic random walks in a tree, J. Theor. Probab., Volume 4 (1991), pp. 111-136 | Article | MR 1088396 | Zbl 0728.60013

[11] Dahmani, François Classifying spaces and boundaries for relatively hyperbolic groups, Proc. Lond. Math. Soc., Volume 86 (2003), pp. 666-684 | Article | MR 1974394 | Zbl 1031.20039

[12] Derriennic, Yves Marche aléatoire sur le groupe libre et frontière de Martin, Z. Wahrscheinlichkeitstheor. Verw. Geb., Volume 32 (1975), pp. 261-276 | Article | Zbl 0364.60117

[13] Gekhtman, Ilya; Gerasimov, Victor; Potyagailo, Loenid; Yang, Wenyuan Martin boundary covers Floyd boundary (2017) (https://arxiv.org/abs/1708.02133)

[14] Gouëzel, Sébastien Martin boundary of random walks with unbounded jumps in hyperbolic groups, Ann. Probab., Volume 43 (2015), pp. 2374-2404 | Article | MR 3395464 | Zbl 1326.31006

[15] Hennequin, Paul-Louis Processus de Markoff en Cascade, Ann. Inst. Henri Poincaré, Volume 18 (1963), pp. 109-196 | Numdam | MR 164373 | Zbl 0141.15802

[16] Hruska, Geoffrey; Kleiner, Bruce Hadamard spaces with isolated flats, Geom. Topol., Volume 9 (2005), pp. 1501-1538 | Article | MR 2175151 | Zbl 1087.20034

[17] Hueber, Hermann; Müller, Detlef Asymptotics for some Green kernels on the Heisenberg group and the Martin boundary, Math. Ann., Volume 283 (1989), pp. 97-119 | Article | MR 973806 | Zbl 0639.31005

[18] Ignatiouk-Robert, Irina Martin boundary of a killed random walk on a half-space, J. Theor. Probab., Volume 21 (2008), pp. 35-68 | Article | MR 2384472 | Zbl 1146.60061

[19] Ignatiouk-Robert, Irina; Loree, Christophe Martin boundary of a killed random walk on a quadrant, Ann. Probab., Volume 38 (2010), pp. 1106-1142 | Article | MR 2674995 | Zbl 1205.60057

[20] Kato, Tosio Perturbation Theory for Linear Operators, Springer, 1980 | Zbl 0435.47001

[21] Margulis, Gregori Positive harmonic functions on nilpotent groups, Sov. Math., Dokl., Volume 7 (1966), pp. 241-244 | MR 222217

[22] Ney, Peter; Spitzer, Frank The Martin boundary for random walk, Trans. Am. Math. Soc., Volume 11 (1966), pp. 116-132 | MR 195151 | Zbl 0141.15601

[23] Pólya, Georg Über eine Aufgabe der Wahrscheinlichkeitsrechnung betreffend die Irrfahrt im Straßennetz, Math. Ann., Volume 84 (1921), pp. 149-160 | Article | Zbl 48.0603.01

[24] Raschel, Kilian; Lecouvey, Cédric t-Martin boundary of killed random walks in the quadrant, Séminaire de Probabilités (Lecture Notes in Mathematics) Volume 2168, Springer, 2016, pp. 305-323 | MR 3618134 | Zbl 1367.60048

[25] Sawyer, Stanley Martin Boundaries and Random Walks, Harmonic functions on trees and buildings (Contemporary Mathematics) Volume 206, American Mathematical Society, 1997, pp. 17-44 | Article | MR 1463727 | Zbl 0891.60073

[26] Seneta, Eugene Non-negative Matrices and Markov Chains, Springer, 1981 | Zbl 0471.60001

[27] Spitzer, Frank Principles of Random Walks, Springer, 1976 | Zbl 0359.60003

[28] Woess, Wolfgang A description of the Martin boundary for nearest neighbour random walks on free products, Probability measures on groups VIII (Lecture Notes in Mathematics) Volume 1210, Springer, 1986, pp. 203-215 | Article | MR 879007 | Zbl 0611.60006

[29] Woess, Wolfgang Random Walks on Infinite Graphs and Groups, Cambridge University Press, 2000 | Zbl 0951.60002