Proper quasi-homogeneous domains in flag manifolds and geometric structures
Annales de l'Institut Fourier, Volume 68 (2018) no. 6, p. 2635-2662
In this paper we study domains in flag manifolds which are bounded in an affine chart and whose projective automorphism group acts co-compactly. In contrast to the many examples in real projective space, we will show that no examples exist in many flag manifolds. Moreover, in the cases where such domains can exist, we show that they satisfy a natural convexity condition and have an invariant metric which generalizes the Hilbert metric. As an application we give some restrictions on the developing map for certain (G,X)-structures.
On étudie dans cet article les domaines dans les variétés de drapeaux dont l’image dans une carte affine est bornée et dont l’action du groupe des automorphismes projectifs est co-compacte. Par contraste avec les nombreux exemples existant dans l’espace projectif réel, on démontre que de nombreuses variétés de drapeaux ne contiennent pas de tels domaines. On établit en outre que dans les cas où l’existence de tels domaines n’est pas exclue, ils sont soumis à une condition de convexité naturelle et possèdent une métrique invariante qui généralise la métrique de Hilbert. Une application de nos résultats fournit des restrictions sur l’application développante de certaines (G,X)-structures.
Received : 2016-05-09
Revised : 2017-09-15
Accepted : 2017-12-13
Published online : 2018-11-23
DOI : https://doi.org/10.5802/aif.3219
Classification:  22F50,  53C24,  53A20
Keywords: Real projective structures, (G,X)-structure, Kobayashi metric, Carathéodory metric, Hilbert metric, projective automorphism group
@article{AIF_2018__68_6_2635_0,
     author = {Zimmer, Andrew M.},
     title = {Proper quasi-homogeneous domains in flag manifolds and geometric structures},
     journal = {Annales de l'Institut Fourier},
     publisher = {Association des Annales de l'institut Fourier},
     volume = {68},
     number = {6},
     year = {2018},
     pages = {2635-2662},
     doi = {10.5802/aif.3219},
     language = {en},
     url = {https://aif.centre-mersenne.org/item/AIF_2018__68_6_2635_0}
}
Proper quasi-homogeneous domains in flag manifolds and geometric structures. Annales de l'Institut Fourier, Volume 68 (2018) no. 6, pp. 2635-2662. doi : 10.5802/aif.3219. https://aif.centre-mersenne.org/item/AIF_2018__68_6_2635_0/

[1] Andersson, Mats; Passare, Mikael; Sigurdsson, Ragnar Complex convexity and analytic functionals, Birkhäuser, Progress in Mathematics, Tome 225 (2004), xii+160 pages | Article | MR 2060426

[2] Ballas, Samuel A.; Danciger, Jeffrey; Lee, Gye-Seon Convex projective structures on non-hyperbolic three-manifolds, Geom. Topol., Tome 22 (2018) no. 3, pp. 1593-1646

[3] Benoist, Yves Automorphismes des cônes convexes, Invent. Math., Tome 141 (2000) no. 1, pp. 149-193 | Article | MR 1767272

[4] Benoist, Yves Convexes divisibles. IV. Structure du bord en dimension 3, Invent. Math., Tome 164 (2006) no. 2, pp. 249-278 | Article | MR 2218481

[5] Benoist, Yves A survey on divisible convex sets, Geometry, analysis and topology of discrete groups, International Press. (Advanced Lectures in Mathematics (ALM)) Tome 6 (2008), pp. 1-18 | MR 2464391 | Zbl 1154.22016

[6] Bowen, Rufus Hausdorff dimension of quasicircles, Publ. Math., Inst. Hautes Étud. Sci. (1979) no. 50, pp. 11-25 | MR 556580

[7] Cano, Angel; Seade, José On discrete groups of automorphisms of 2 , Geom. Dedicata, Tome 168 (2014), pp. 9-60 | Article | MR 3158029

[8] Dubois, Loïc Projective metrics and contraction principles for complex cones, J. Lond. Math. Soc., Tome 79 (2009) no. 3, pp. 719-737 | Article | MR 2506695

[9] Eberlein, Patrick B. Geometry of nonpositively curved manifolds, University of Chicago Press, Chicago Lectures in Mathematics (1996), vii+449 pages | MR 1441541

[10] Frankel, Sidney Complex geometry of convex domains that cover varieties, Acta Math., Tome 163 (1989) no. 1-2, pp. 109-149 | Article | MR 1007621

[11] Goldman, William M. Geometric structures on manifolds and varieties of representations, Geometry of group representations (Boulder, CO, 1987), American Mathematical Society (Contemporary Mathematics) Tome 74 (1988), pp. 169-198 | Article | MR 957518

[12] Goldman, William M. Convex real projective structures on compact surfaces, J. Differ. Geom., Tome 31 (1990) no. 3, pp. 791-845 http://projecteuclid.org/euclid.jdg/1214444635 | MR 1053346

[13] Guéritaud, François; Guichard, Olivier; Kassel, Fanny; Wienhard, Anna Anosov representations and proper actions, Geom. Topol., Tome 21 (2017) no. 1, pp. 485-584 | Article | MR 3608719

[14] Guéritaud, François; Guichard, Olivier; Kassel, Fanny; Wienhard, Anna Compactification of certain Clifford-Klein forms of reductive homogeneous spaces, Mich. Math. J., Tome 66 (2017) no. 1, pp. 49-84 | Article | MR 3619735

[15] Guichard, Olivier; Wienhard, Anna Convex foliated projective structures and the Hitchin component for PSL 4 (R), Duke Math. J., Tome 144 (2008) no. 3, pp. 381-445 | Article | MR 2444302

[16] Guichard, Olivier; Wienhard, Anna Anosov representations: domains of discontinuity and applications, Invent. Math., Tome 190 (2012) no. 2, pp. 357-438 | Article | MR 2981818

[17] Hörmander, Lars Notions of convexity, Birkhäuser, Modern Birkhäuser Classics (2007), viii+414 pages (Reprint of the 1994 edition) | MR 2311920

[18] Isaev, Alexander V.; Krantz, Steven G. Domains with non-compact automorphism group: a survey, Adv. Math., Tome 146 (1999) no. 1, pp. 1-38 | Article | MR 1706680 | Zbl 1040.32019

[19] Johnson, Dennis; Millson, John J. Deformation spaces associated to compact hyperbolic manifolds, Discrete groups in geometry and analysis (New Haven, CO, 1984), Birkhäuser Boston (Progress in Mathematics) Tome 67 (1987), pp. 48-106 | MR 900823

[20] Kapovich, Michael Convex projective structures on Gromov-Thurston manifolds, Geom. Topol., Tome 11 (2007), pp. 1777-1830 | Article | MR 2350468

[21] Kapovich, Michael; Leeb, Bernhard; Porti, Joan Morse actions of discrete groups on symmetric space (2014) (https://arxiv.org/abs/1403.7671 )

[22] Kapovich, Michael; Leeb, Bernhard; Porti, Joan A Morse Lemma for quasigeodesics in symmetric spaces and euclidean buildings (2014) (https://arxiv.org/abs/1411.4176 )

[23] Kapovich, Michael; Leeb, Bernhard; Porti, Joan Dynamics on flag manifolds: domains of proper discontinuity and cocompactness, Geom. Topol., Tome 22 (2018) no. 1, pp. 157-234 | Article | MR 3720343

[24] Kobayashi, Shoshichi Intrinsic distances associated with flat affine or projective structures, J. Fac. Sci. Univ. Tokyo Sect. IA Math., Tome 24 (1977) no. 1, pp. 129-135 | MR 0445016 | Zbl 0367.53002

[25] Kobayashi, Shoshichi; Ochiai, Takushiro Holomorphic projective structures on compact complex surfaces, Math. Ann., Tome 249 (1980) no. 1, pp. 75-94 | Article | MR 575449

[26] Koszul, Jean-Louis Déformations de connexions localement plates, Ann. Inst. Fourier, Tome 18 (1968) no. 1, pp. 103-114 | MR 0239529

[27] Marquis, Ludovic Around groups in Hilbert geometry, Handbook of Hilbert geometry, European Mathematical Society (IRMA Lectures in Mathematics and Theoretical Physics) Tome 22 (2014), pp. 207-261 | MR 3329882

[28] Mostow, G. D. Strong rigidity of locally symmetric spaces, Princeton University Press, Annals of Mathematics Studies, Tome 78 (1973), v+195 pages | MR 0385004 | Zbl 0265.53039

[29] Nagano, Tadashi Transformation groups on compact symmetric spaces, Trans. Am. Math. Soc., Tome 118 (1965), pp. 428-453 | MR 0182937

[30] Palais, Richard S. On the existence of slices for actions of non-compact Lie groups, Ann. Math., Tome 73 (1961), pp. 295-323 | MR 0126506

[31] Quint, Jean-François Convexes divisibles (d’après Yves Benoist), Séminaire Bourbaki. Volume 2008/2009. Exposés 997–1011, Société Mathématique de France (Astérisque) Tome 332 (2010), p. 45-73, Exp. No. 999 | MR 2648674 | Zbl 1211.22008

[32] Thurston, William P. Three-dimensional geometry and topology. Vol. 1, Princeton University Press, Princeton Mathematical Series, Tome 35 (1997), x+311 pages (Edited by Silvio Levy) | MR 1435975

[33] Van Limbeek, Wouter; Zimmer, Andrew Rigidity of convex divisible domains in flag manifolds (2015) (https://arxiv.org/abs/1510.04118 )

[34] Warner, Garth Harmonic analysis on semi-simple Lie groups. I, Springer, Die Grundlehren der mathematischen Wissenschaften, Tome 188 (1972), xvi+529 pages | MR 0498999 | Zbl 0265.22020

[35] Zimmer, Andrew Characterizing the unit ball by its projective automorphism group, Geom. Topol., Tome 20 (2016) no. 4, pp. 2397-2432 | Article | MR 3548469