On a Question of N. Th. Varopoulos and the constant C 2 (n)  [ Sur une question de N. Th. Varopoulos et la constante C 2 (n) ]
Annales de l'Institut Fourier, Tome 68 (2018) no. 6, pp. 2613-2634.

Soit k [Z 1 ,...,Z n ] l’ensemble de tous les polynômes de degré au plus k dans n variables complexes et 𝒞 n l’ensemble de tous les n-tuples T=(T 1 ,...,T n ) de contractions qui commutent sur un espace de Hilbert . L’inégalité intéressante

KGlimnC2(n)2KG,

Ck(n)=supp(T):p𝔻n,1,pk[Z1,...,Zn],T𝒞n

et K G est la constante complexe de Grothendieck, est due à Varopoulos. Nous répondons à une question de longue date en montrant que lim n C 2 (n) K G est strictement plus grand que 1. Soit 2 s [Z 1 ,...,Z n ] l’ensemble des polynômes homogènes complexes p(z 1 ,...,z n )= j,k=1 n a jk z j z k de degré deux dans n-variables, oú ((a jk )) est une matrice symétrique complexe n×n. Pour chaque n, on définit la carte linéaire 𝒜 n :( 2 s [Z 1 ,...,Z n ],· 𝔻 n , )(M n ,· 1 ) par 𝒜 n (p)=((a jk )). Nous montrons que le supremum (sur n) de la norme des opérateurs 𝒜 n ;n, est borné inférieurement par la constante π 2 /8. En utilisant une classe d’opérateurs, introduite par Varopoulos, nous construisons aussi une grande classe de polynômes explicites pour laquelle l’inégalité de von Neumann n’est pas satisfaite. Nous prouvons que le polynôme de Varopoulos–Kaijser est extrémal parmi une grande classe convenablement choisie de polynômes homogènes de degré deux. Nous étudions également le comportement de la constante C k (n) lorsque n.

Let k [Z 1 ,...,Z n ] denote the set of all polynomials of degree at most k in n complex variables and 𝒞 n denote the set of all n-tuple T=(T 1 ,...,T n ) of commuting contractions on some Hilbert space . The interesting inequality

KGlimnC2(n)2KG,

where

Ck(n)=supp(T):p𝔻n,1,pk[Z1,...,Zn],T𝒞n

and K G is the complex Grothendieck constant, is due to Varopoulos. We answer a long–standing question by showing that the limit lim n C 2 (n) K G is strictly bigger than 1. Let 2 s [Z 1 ,...,Z n ] denote the set of all complex valued homogeneous polynomials p(z 1 ,...,z n )= j,k=1 n a jk z j z k of degree two in n-variables, where ((a jk )) is a n×n complex symmetric matrix. For each n, define the linear map 𝒜 n :( 2 s [Z 1 ,...,Z n ],· 𝔻 n , )(M n ,· 1 ) to be 𝒜 n (p)=((a jk )). We show that the supremum (over n) of the norm of the operators 𝒜 n ;n, is bounded below by the constant π 2 /8. Using a class of operators, first introduced by Varopoulos, we also construct a large class of explicit polynomials for which the von Neumann inequality fails. We prove that the original Varopoulos–Kaijser polynomial is extremal among a, suitably chosen, large class of homogeneous polynomials of degree two. We also study the behaviour of the constant C k (n) as n.

Reçu le : 2017-05-05
Révisé le : 2017-11-09
Accepté le : 2018-01-11
Publié le : 2018-11-23
DOI : https://doi.org/10.5802/aif.3218
Classification : 47A13,  47A25,  47A60,  47A63
Mots clés: Inégalité de Grothendieck, inégalité de von Neumann, opérateur de Varopoulos, Constante de Grothendieck, Constante de Grothedieck positive
@article{AIF_2018__68_6_2613_0,
     author = {Gupta, Rajeev and Ray, Samya K.},
     title = {On a Question of N. Th. Varopoulos and the constant $C\_2(n)$},
     journal = {Annales de l'Institut Fourier},
     pages = {2613--2634},
     publisher = {Association des Annales de l'institut Fourier},
     volume = {68},
     number = {6},
     year = {2018},
     doi = {10.5802/aif.3218},
     language = {en},
     url = {aif.centre-mersenne.org/item/AIF_2018__68_6_2613_0/}
}
Gupta, Rajeev; Ray, Samya K. On a Question of N. Th. Varopoulos and the constant $C_2(n)$. Annales de l'Institut Fourier, Tome 68 (2018) no. 6, pp. 2613-2634. doi : 10.5802/aif.3218. https://aif.centre-mersenne.org/item/AIF_2018__68_6_2613_0/

[1] Alon, Noga; Naor, Assaf Approximating the cut-norm via Grothendieck’s inequality, SIAM J. Comput., Tome 35 (2006) no. 4, pp. 787-803 | Article | MR 2203567 | Zbl 1096.68163

[2] Andô, Tadao On a pair of commutative contractions, Acta Sci. Math., Tome 24 (1963), pp. 88-90 | MR 0155193 | Zbl 016.32403

[3] Bagchi, Bhaskar; Misra, Gadadhar Contractive homomorphisms and tensor product norms, Integral Equations Oper. Theory, Tome 21 (1995) no. 3, pp. 255-269 | Article | MR 1316543 | Zbl 0826.46039

[4] Bagchi, Bhaskar; Misra, Gadadhar On Grothendieck Constants (2008) (www.math.iisc.ac.in/ gm/gmhomefiles/papers/kgc2.pdf)

[5] Braverman, Mark; Makarychev, Konstantin; Makarychev, Yury; Naor, Assaf The Grothendieck constant is strictly smaller than Krivine’s bound, Forum Math. Pi, Tome 1 (2013), 4, 42 pages (Art. ID. 4, 42 p.) | MR 3141414 | Zbl 1320.15016

[6] Crabb, M. J.; Davie, Alexander M. von Neumann’s inequality for Hilbert space operators, Bull. Lond. Math. Soc., Tome 7 (1975), p. 49-50 | MR 0365179 | Zbl 0301.47007

[7] Fishburn, Peter C.; Reeds, James A. Bell inequalities, Grothendieck’s constant, and root two, SIAM J. Discrete Math., Tome 7 (1994) no. 1, pp. 48-56 | Article | MR 1259009 | Zbl 0792.05030

[8] Gupta, Rajeev The Carathéodory-Fejér Interpolation Problems and the von-Neumann Inequality (2015) (https://arxiv.org/abs/1508.07199)

[9] Gupta, Rajeev An improvement on the bound for C 2 (n), Acta Sci. Math., Tome 83 (2017) no. 1-2, pp. 263-269 | Zbl 1389.47020

[10] Holbrook, John A. Schur norms and the multivariate von Neumann inequality, Recent advances in operator theory and related topics (Szeged, 1999) (Operator Theory: Advances and Applications) Tome 127, Birkhäuser, 2001, pp. 375-386 | MR 1902811 | Zbl 0987.47002

[11] Holbrook, John A.; Schoch, Jean-Pierre Theory vs. experiment: multiplicative inequalities for the numerical radius of commuting matrices, Topics in operator theory. Volume 1. Operators, matrices and analytic functions (Operator Theory: Advances and Applications) Tome 202, Birkhäuser, 2010, pp. 273-284 | Article | MR 2723281 | Zbl 1192.15010

[12] Krivine, Jean-Louis Sur la constante de Grothendieck, C. R. Acad. Sci. Paris, Sér. A, Tome 284 (1977) no. 8, p. 445-446 | MR 0428414 | Zbl 0366.60010

[13] Krivine, Jean-Louis Constantes de Grothendieck et fonctions de type positif sur les sphères, Adv. Math., Tome 31 (1979) no. 1, pp. 16-30 | Article | MR 521464 | Zbl 0413.46054

[14] Li, Chi-Kwong; Tam, Bit-Shun A note on extreme correlation matrices, SIAM J. Matrix Anal. Appl., Tome 15 (1994) no. 3, pp. 903-908 | Article | MR 1282701 | Zbl 0804.15011

[15] von Neumann, Johann Eine Spektraltheorie für allgemeine Operatoren eines unitären Raumes, Math. Nachr., Tome 4 (1951), pp. 258-281 | MR 0043386 | Zbl 0042.12301

[16] Niculescu, Constantin; Persson, Lars-Erik Convex functions and their applications. A contemporary approach, CMS Books in Mathematics/Ouvrages de Mathématiques de la SMC, Tome 23, Springer, 2006, xvi+255 pages | Article | MR 2178902 | Zbl 1100.26002

[17] Pisier, Gilles Grothendieck inequality, random matrices and quantum expanders (based on SGU Special lectures at Kyoto University from March 12 to March 18, 2015, recorded by Kei Hasegawa, https://ktgu.math.kyoto-u.ac.jp/sites/default/files/Pisier_lecturenote.pdf)

[18] Pisier, Gilles Factorization of linear operators and geometry of Banach spaces, Regional Conference Series in Mathematics, Tome 60, American Mathematical Society, 1986, x+154 pages | Article | MR 829919 | Zbl 0588.46010

[19] Pisier, Gilles Similarity problems and completely bounded maps. Includes the solution to “The Halmos problem”, Lecture Notes in Mathematics, Tome 1618, Springer, 2001, viii+198 pages | Article | MR 1818047 | Zbl 0971.47016

[20] Pisier, Gilles Grothendieck’s theorem, past and present, Bull. Am. Math. Soc., Tome 49 (2012) no. 2, pp. 237-323 | Article | MR 2888168

[21] Ray, Samya Kumar On Multivariate Matsaev’s Conjecture (2017) (https://arxiv.org/abs/1703.00733)

[22] Varopoulos On an inequality of von Neumann and an application of the metric theory of tensor products to operators theory, J. Funct. Anal., Tome 16 (1974), pp. 83-100 | MR 0355642 | Zbl 0288.47006

[23] Varopoulos On a commuting family of contractions on a Hilbert space, Rev. Roum. Math. Pures Appl., Tome 21 (1976) no. 9, pp. 1283-1285 | MR 0430824 | Zbl 0365.47004