A modular supercongruence for 6 F 5 : An Apéry-like story
Annales de l'Institut Fourier, Volume 68 (2018) no. 5, p. 1987-2004
We prove a supercongruence modulo p 3 between the pth Fourier coefficient of a weight 6 modular form and a truncated 6 F 5 -hypergeometric series. Novel ingredients in the proof are the comparison of two rational approximations to ζ(3) to produce non-trivial harmonic sum identities and the reduction of the resulting congruences between harmonic sums via a congruence relating the Apéry numbers to another Apéry-like sequence.
On démontre une supercongruence modulo p 3 entre le p-ième coefficient de Fourier d’une forme modulaire de poids 6 et une série hypergéométrique 6 F 5 tronquée. Les nouveaux ingrédients de la preuve sont la comparaison de deux approximations rationnelles de ζ(3) pour produire des identités non triviales entre sommes harmoniques, et la réduction des congruences qui en résultent entre des sommes via une congruence qui relie les nombres d’Apéry á une autre suite du type de celle d’Apéry.
Received : 2017-02-06
Accepted : 2017-11-14
Published online : 2018-11-23
DOI : https://doi.org/10.5802/aif.3201
Classification:  11B65,  33C20,  33F10
Keywords: supercongruence, Apéry numbers, Apéry-like numbers, hypergeometric function
@article{AIF_2018__68_5_1987_0,
     author = {Osburn, Robert and Straub, Armin and Zudilin, Wadim},
     title = {A modular supercongruence for $\_6F\_5$: An Ap\'ery-like~story},
     journal = {Annales de l'Institut Fourier},
     publisher = {Association des Annales de l'institut Fourier},
     volume = {68},
     number = {5},
     year = {2018},
     pages = {1987-2004},
     doi = {10.5802/aif.3201},
     language = {en},
     url = {https://aif.centre-mersenne.org/item/AIF_2018__68_5_1987_0}
}
Osburn, Robert; Straub, Armin; Zudilin, Wadim. A modular supercongruence for $_6F_5$: An Apéry-like story. Annales de l'Institut Fourier, Volume 68 (2018) no. 5, pp. 1987-2004. doi : 10.5802/aif.3201. https://aif.centre-mersenne.org/item/AIF_2018__68_5_1987_0/

[1] Ahlgren, Scott; Ono, Ken A Gaussian hypergeometric series evaluation and Apéry number congruences, J. Reine Angew. Math., Tome 518 (2000), pp. 187-212 | Article | MR 1739404 | Zbl 0940.33002

[2] Apéry, Roger Irrationalité de ζ(2) et ζ(3), Société Mathématique de France (Astérisque) Tome 61 (1979), pp. 11-13 | Zbl 0401.10049

[3] Bailey, Wilfrid Norman Generalized hypergeometric series, Stechert-Hafner, Cambridge Tracts in Mathematics and Mathematical Physics, Tome 32 (1964), v+108 pages | MR 0185155

[4] Beukers, Frits Another congruence for the Apéry numbers, J. Number Theory, Tome 25 (1987) no. 2, pp. 201-210 | Article | MR 873877 | Zbl 0614.10011

[5] Beukers, Frits Irrationality proofs using modular forms, Journées arithmétiques de Besançon (Besançon, 1985), Société Mathématique de France (Astérisque) Tome 147-148 (1987), pp. 271-283 | MR 891433 | Zbl 0613.10031

[6] Chu, Wenchang; De Donno, Livia Hypergeometric series and harmonic number identities, Adv. Appl. Math., Tome 34 (2005) no. 1, pp. 123-137 | Article | MR 2102278 | Zbl 1062.05017

[7] Cooper, Shaun Sporadic sequences, modular forms and new series for 1/π, Ramanujan J., Tome 29 (2012) no. 1-3, pp. 163-183 | Article | MR 2994096 | Zbl 1336.11031

[8] Frechette, Sharon; Ono, Ken; Papanikolas, Matthew Gaussian hypergeometric functions and traces of Hecke operators, Int. Math. Res. Not., Tome 2004 (2004) no. 60, pp. 3233-3262 | Article | MR 2096220 | Zbl 1088.11029

[9] Fuselier, Jenny G.; Long, Ling; Ramakrishna, Ravi; Swisher, Holly; Tu, Fang-Ting Hypergeometric functions over finite fields (2015) (http://arxiv.org/abs/1510.02575 )

[10] Fuselier, Jenny G.; Mccarthy, Dermot Hypergeometric type identities in the p-adic setting and modular forms, Proc. Am. Math. Soc., Tome 144 (2016) no. 4, pp. 1493-1508 | Article | MR 3451227 | Zbl 06549217

[11] Greene, John Hypergeometric functions over finite fields, Trans. Am. Math. Soc., Tome 301 (1987) no. 1, pp. 77-101 | Article | MR 879564 | Zbl 0629.12017

[12] Van Hamme, L. Some conjectures concerning partial sums of generalized hypergeometric series, p-adic functional analysis (Nijmegen, 1996), Dekker (Lecture Notes in Pure and Appl. Math.) Tome 192 (1997), pp. 223-236 | MR 1459212 | Zbl 0895.11051

[13] Kibelbek, Jonas; Long, Ling; Moss, Kevin; Sheller, Benjamin; Yuan, Hao Supercongruences and complex multiplication, J. Number Theory, Tome 164 (2016), pp. 166-178 | Article | MR 3474383 | Zbl 1334.33020

[14] Kilbourn, Timothy An extension of the Apéry number supercongruence, Acta Arith., Tome 123 (2006) no. 4, pp. 335-348 | Article | MR 2262248 | Zbl 1170.11008

[15] Krattenthaler, Christian; Rivoal, Tanguy Hypergéométrie et fonction zêta de Riemann, Mem. Am. Math. Soc., Tome 186 (2007) no. 875, x+87 pages | Article | MR 2295224 | Zbl 1113.11039

[16] Mccarthy, Dermot Binomial coefficient-harmonic sum identities associated to supercongruences, Integers, Tome 11 (2011), A37 (Art A37, 8 p.) | Article | MR 2798613 | Zbl 1234.05039

[17] Mccarthy, Dermot Extending Gaussian hypergeometric series to the p-adic setting, Int. J. Number Theory, Tome 8 (2012) no. 7, pp. 1581-1612 | Article | MR 2968943 | Zbl 1253.33024

[18] Mccarthy, Dermot On a supercongruence conjecture of Rodriguez-Villegas, Proc. Am. Math. Soc., Tome 140 (2012) no. 7, pp. 2241-2254 | Article | MR 2898688 | Zbl 1354.11030

[19] Nesterenko Some remarks on ζ(3), Mat. Zametki, Tome 59 (1996) no. 6, pp. 865-880 | Article | MR 1445472 | Zbl 0888.11028

[20] Osburn, Robert; Schneider, Carsten Gaussian hypergeometric series and supercongruences, Math. Comput., Tome 78 (2009) no. 265, pp. 275-292 | Article | MR 2448707 | Zbl 1209.11049

[21] Osburn, Robert; Zudilin, Wadim On the (K.2) supercongruence of Van Hamme, J. Math. Anal. Appl., Tome 433 (2016) no. 1, pp. 706-711 | Article | MR 3388817 | Zbl 06485394

[22] Paule, Peter; Schneider, Carsten Computer proofs of a new family of harmonic number identities, Adv. Appl. Math., Tome 31 (2003) no. 2, pp. 359-378 | Article | MR 2001619 | Zbl 1039.11007

[23] Petkovšek, Marko; Wilf, Herbert S.; Zeilberger, Doron A = B , Peters (1996), xii+212 pages (With a foreword by Donald E. Knuth, With a separately available computer disk) | MR 1379802 | Zbl 0848.05002

[24] Van Der Poorten, Alfred A proof that Euler missed: Apéry’s proof of the irrationality of ζ(3), Math. Intell., Tome 1 (1979) no. 4, pp. 195-203 | Article | MR 547748 | Zbl 0409.10028

[25] Rivoal, Tanguy Propriétés diophantinnes des valeurs de la fonction zêta de Riemann aux entiers impairs, Université de Caen (France) (2001) (Ph. D. Thesis)

[26] Rodriguez-Villegas, Fernando Hypergeometric families of Calabi–Yau manifolds, Calabi–Yau varieties and mirror symmetry (Toronto, ON, 2001), American Mathematical Society (Fields Inst. Commun.) Tome 38 (2003), pp. 223-231 | MR 2019156 | Zbl 1062.11038

[27] Schneider, Carsten Symbolic summation assists combinatorics, Sémin. Lothar. Comb., Tome 56 (2007), B56b http://www.mat.univie.ac.at/slc/wpapers/s56schneider.html (Art. B56b, 36 p.) | Zbl 1188.05001

[28] Sloane, Neil J. A. The On-Line Encyclopedia of Integer Sequences (2017) (published electronically at http://oeis.org)

[29] Swisher, Holly On the supercongruence conjectures of van Hamme, Res. Math. Sci., Tome 2 (2015), 18 (Art. 18, 21 p.) | Article | MR 3411813 | Zbl 1337.33005

[30] Zagier, Don Integral solutions of Apéry-like recurrence equations, Groups and symmetries, American Mathematical Society (CRM Proc. Lecture Notes) Tome 47 (2009), pp. 349-366 | MR 2500571 | Zbl 1244.11042

[31] Zudilin, Wadim Apéry’s theorem. Thirty years after, Int. J. Math. Comput. Sci., Tome 4 (2009) no. 1, pp. 9-19 | MR 2598496 | Zbl 1223.11089

[32] Zudilin, Wadim A generating function of the squares of Legendre polynomials, Bull. Aust. Math. Soc., Tome 89 (2014) no. 1, pp. 125-131 | Article | MR 3163010 | Zbl 1334.33022

[33] Zudilin, Wadim Hypergeometric heritage of W. N. Bailey. With an appendix: Bailey’s letters to F. Dyson (2016) (http://arxiv.org/abs/1611.08806 )