The Deligne–Mumford and the Incidence Variety Compactifications of the Strata of Ω g
Annales de l'Institut Fourier, Volume 68 (2018) no. 3, p. 1169-1240
The main goal of this work is to construct and study a reasonable compactification of the strata of the moduli space of abelian differentials. This allows us to compute the Kodaira dimension of some strata of the moduli space of abelian differentials. The main ingredients to study the compactifications of the strata are a version of the plumbing cylinder construction for differential forms and an extension of the parity of the connected components of the strata to the differentials on curves of compact type. We study in detail the compactifications of the hyperelliptic minimal strata and of the odd minimal stratum in genus three.
L’objectif central de cet article est de construire et d’étudier une compactification raisonnable des strates des différentielles abéliennes. L’ingrédient principal pour l’étude de cette compactification des strates est une généralisation des techniques de plomberie cylindrique aux différentielles. Cette compactification nous permet de calculer la dimension de Kodaira de certaines de ces strates. Un autre résultat digne d’intérêt est le calcul de la dimension de la projection des strates dans l’espace des modules des surfaces de Riemann. Enfin nous étudions certains problèmes liés à la parité des strates au bord, les composantes hyperelliptiques ainsi que la strate minimale en genre trois.
Received : 2016-05-13
Revised : 2017-03-22
Accepted : 2017-09-14
Published online : 2018-05-04
DOI : https://doi.org/10.5802/aif.3187
Classification:  14H15,  30F30,  14E99,  14H45
Keywords: Abelian differentials, Riemann surfaces, Moduli spaces, Strata, Compactification, Kodaira dimension
@article{AIF_2018__68_3_1169_0,
     author = {Gendron, Quentin},
     title = {The Deligne--Mumford and the Incidence Variety Compactifications of the Strata of $\Omega \protect \mathcal{M}\_{g}$},
     journal = {Annales de l'Institut Fourier},
     publisher = {Association des Annales de l'institut Fourier},
     volume = {68},
     number = {3},
     year = {2018},
     pages = {1169-1240},
     doi = {10.5802/aif.3187},
     language = {en},
     url = {https://aif.centre-mersenne.org/item/AIF_2018__68_3_1169_0}
}
The Deligne–Mumford and the Incidence Variety Compactifications of the Strata of $\Omega \protect \mathcal{M}_{g}$. Annales de l'Institut Fourier, Volume 68 (2018) no. 3, pp. 1169-1240. doi : 10.5802/aif.3187. https://aif.centre-mersenne.org/item/AIF_2018__68_3_1169_0/

[1] Arbarello, Enrico; Cornalba, Maurizio; Griffiths, Phillip A. Geometry of algebraic curves. Volume II, Springer, Heidelberg, Grundlehren der Mathematischen Wissenschaften, Tome 268 (2011), xxx+963 pages | MR 2807457 | Zbl 1235.14002

[2] Aulicino, David; Nguyen, Duc-Manh; Wright, Alex Classification of higher rank orbit closures in odd (4)., J. Eur. Math. Soc. (JEMS), Tome 18 (2016) no. 8, pp. 1855-1872 | Article | Zbl 1369.37044

[3] Bainbridge, Matt; Chen, Dawei; Gendron, Quentin; Grushevsky, Samuel; Moeller, Martin Compactification of strata of abelian differentials (to appear in Duke Math. J.)

[4] Bardelli, Fabio Lectures on stable curves, Lectures on Riemann surfaces (Trieste, 1987), World Scientific Publishing Co (1989), pp. 648-704 | Zbl 0800.14012

[5] Teixidor I Bigas, Montserrat The divisor of curves with a vanishing theta-null, Compos. Math., Tome 66 (1988) no. 1, pp. 15-22 | MR 937985 | Zbl 0663.14017

[6] Bini, Gilberto; Fontanari, Claudio; Viviani, Filippo On the birational geometry of the universal Picard variety., Int. Math. Res. Not., Tome 2012 (2012) no. 4, pp. 740-780 | Article | Zbl 1246.14038

[7] Chen, Dawei Covers of elliptic curves and the moduli space of stable curves, J. Reine Angew. Math., Tome 649 (2010), pp. 167-205 | Article | MR 2746470 | Zbl 1208.14024

[8] Chen, Dawei Degenerations of Abelian Differentials, J. Differ. Geom., Tome 107 (2017) no. 3, pp. 395-453 | Article | Zbl 06846968

[9] Cornalba, Maurizio Moduli of curves and theta-characteristics, Lectures on Riemann surfaces (Trieste, 1987), World Scientific Publishing Co (1989), pp. 560-589 | MR 1082361 | Zbl 0800.14011

[10] Deligne, Pierre; Mumford, David The irreducibility of the space of curves of given genus, Publ. Math., Inst. Hautes Étud. Sci. (1969) no. 36, pp. 75-109 | Article | MR 0262240 | Zbl 0181.48803

[11] Eskin, Alex; Masur, Howard; Zorich, Anton Moduli spaces of abelian differentials: the principal boundary, counting problems, and the Siegel-Veech constants, Publ. Math., Inst. Hautes Étud. Sci. (2003) no. 97, pp. 61-179 | Article | MR 2010740 | Zbl 1037.32013

[12] Farkas, Gavril The birational type of the moduli space of even spin curves., Adv. Math., Tome 223 (2010) no. 2, pp. 433-443 | Article | Zbl 1183.14020

[13] Farkas, Gavril; Pandharipande, Rahul The moduli space of twisted canonical divisors (to appear in J. Inst. Math. Jussieu)

[14] Farkas, Gavril; Verra, Alessandro Moduli of theta-characteristics via Nikulin surfaces., Math. Ann., Tome 354 (2012) no. 2, pp. 465-496 | Article | Zbl 1259.14033

[15] Farkas, Gavril; Verra, Alessandro The geometry of the moduli space of odd spin curves., Ann. Math., Tome 180 (2014) no. 3, pp. 927-970 | Article | Zbl 1325.14045

[16] Griffiths, Phillip A.; Harris, Joseph Principles of algebraic geometry, John Wiley & Sons, New York, Wiley Classics Library (1994), xiv+813 pages (Reprint of the 1978 original) | MR 1288523 | Zbl 0836.14001

[17] Harris, Joe; Morrison, Ian Moduli of curves, Springer, New York, Graduate Texts in Mathematics, Tome 187 (1998), xiv+366 pages | MR 1631825 | Zbl 0913.14005

[18] Harris, Joe; Mumford, David On the Kodaira dimension of the moduli space of curves, Invent. Math., Tome 67 (1982) no. 1, pp. 23-88 (With an appendix by William Fulton) | Article | MR 664324 | Zbl 0506.14016

[19] Johnson, Dennis Spin structures and quadratic forms on surfaces, J. Lond. Math. Soc., Tome 22 (1980) no. 2, pp. 365-373 | Article | MR 588283 | Zbl 0454.57011

[20] Kang, Pyung-Lyun On singular plane quartics as limits of smooth curves of genus three, J. Korean Math. Soc., Tome 37 (2000) no. 3, pp. 411-436 | MR 1760371 | Zbl 0993.14010

[21] Kontsevich, Maxim; Zorich, Anton Connected components of the moduli spaces of Abelian differentials with prescribed singularities, Invent. Math., Tome 153 (2003) no. 3, pp. 631-678 | Article | MR 2000471 | Zbl 1087.32010

[22] Matheus, Carlos; Möller, Martin; Yoccoz, Jean-Christophe A criterion for the simplicity of the Lyapunov spectrum of square-tiled surfaces., Invent. Math., Tome 202 (2015) no. 1, pp. 333-425 | Article | Zbl 1364.37081

[23] Mumford, David Curves and their Jacobians., The University of Michigan Press (1975), 104 pages | Zbl 0316.14010

[24] De Saint-Gervais, Henri Paul Uniformisation des surfaces de Riemann, ENS Éditions (2010), 544 pages | MR 2768303 | Zbl 1228.30001

[25] Ueno, Kenji Classification theory of algebraic varieties and compact complex spaces, Springer, Lecture Notes in Mathematics, Tome 439 (1975), xix+278 pages (Notes written in collaboration with P. Cherenack) | MR 0506253 | Zbl 0299.14007

[26] Viehweg, Eckart Die Additivität der Kodaira Dimension für projektive Faserräume über Varietäten des allgemeinen Typs, J. Reine Angew. Math., Tome 330 (1982), pp. 132-142 | Article | MR 641815 | Zbl 0466.14009

[27] Zorich, Anton Flat surfaces, Frontiers in number theory, physics, and geometry. I, Springer, Berlin (2006), pp. 437-583 | Article | MR 2261104 | Zbl 1129.32012