On the local-global divisibility over abelian varieties
Annales de l'Institut Fourier, Volume 68 (2018) no. 2, p. 847-873
Let p2 be a prime number and let k be a number field. Let 𝒜 be an abelian variety defined over k. We prove that if Gal(k(𝒜[p])/k) contains an element g of order dividing p-1 not fixing any non-trivial element of 𝒜[p] and H 1 (Gal(k(𝒜[p])/k),𝒜[p]) is trivial, then the local-global divisibility by p n holds for 𝒜(k) for every n. Moreover, we prove a similar result without the hypothesis on the triviality of H 1 (Gal(k(𝒜[p])/k),𝒜[p]), in the particular case where 𝒜 is a principally polarized abelian variety. Then, we get a more precise result in the case when 𝒜 has dimension 2. Finally, we show that the hypothesis over the order of g is necessary, by providing a counterexample.In the Appendix, we explain how our results are related to a question of Cassels on the divisibility of the Tate–Shafarevich group, studied by Ciperiani and Stix and Creutz.
Soit p2 un nombre premier et k un corps de nombres. Soit 𝒜 une variété abélienne définie sur k. Dans cet article nous prouvons le résultat suivant : si Gal(k(𝒜[p])/k) contient un élément g d’ordre divisant p-1 ne fixant aucun élément non nul de 𝒜[p] et que H 1 (Gal(k(𝒜[p])/k),𝒜[p]) est trivial, alors 𝒜(k) satisfait le principe de divisibilité locale globale par p n pour tout n. En outre nous démontrons un résultat similaire sans la condition H 1 (Gal(k(𝒜[p])/k),𝒜[p])=0, dans le cas particulier où 𝒜 est une variété abélienne principalement polarisée. Ensuite nous obtenons un résultat plus précis lorsque 𝒜 est de dimension 2. Enfin nous démontrons que l’hypothèse sur l’ordre de g est nécessaire par un contre-exemple.Dans l’Appendice, nous expliquons le lien entre nos résultats et une question de Cassels sur la divisibilité du groupe de Tate–Shafarevich, qui fut également étudiée par Ciperiani et Stix ainsi que Creutz.
Received : 2016-11-30
Revised : 2017-05-17
Accepted : 2017-06-15
Published online : 2018-04-18
DOI : https://doi.org/10.5802/aif.3179
Classification:  11R34,  11G10
Keywords: Local-global, Galois cohomology, abelian varieties, abelian surfaces
@article{AIF_2018__68_2_847_0,
     author = {Gillibert, Florence and Ranieri, Gabriele},
     title = {On the local-global divisibility over abelian varieties},
     journal = {Annales de l'Institut Fourier},
     publisher = {Association des Annales de l'institut Fourier},
     volume = {68},
     number = {2},
     year = {2018},
     pages = {847-873},
     doi = {10.5802/aif.3179},
     language = {en},
     url = {https://aif.centre-mersenne.org/item/AIF_2018__68_2_847_0}
}
On the local-global divisibility over abelian varieties. Annales de l'Institut Fourier, Volume 68 (2018) no. 2, pp. 847-873. doi : 10.5802/aif.3179. https://aif.centre-mersenne.org/item/AIF_2018__68_2_847_0/

[1] Artin, Emil; Tate, John Class field Theory, Benjamin (1968), xxvi+259 pages | Zbl 0176.33504

[2] Aschbacher, Michael Finite group theory, Cambridge University Press, Cambridge Studies in Advanced Mathematics, Tome 10 (2000), xi+304 pages | Zbl 0997.20001

[3] Ciperiani, Mirela; Stix, Jakob Weil-Châtelet divisible elements in Tate-Shafarevich groups II: On a question of Cassels, J. Reine Angew. Math., Tome 700 (2015), pp. 175-207 | Zbl 1327.11040

[4] Creutz, Brendan Locally trivial torsors that are not Weil-Châtelet divisible, Bull. Lond. Math. Soc, Tome 45 (2013) no. 5, pp. 935-942 | Article | Zbl 1296.11059

[5] Creutz, Brendan On the local-global principle for divisibility in the cohomology of elliptic curves, Math. Res. Lett., Tome 23 (2016) no. 2, pp. 377-387 | Article | Zbl 06609373

[6] Dickson, L. E. Canonical forms of Quaternary Abelian Substitutions in an Arbitrary Galois Field, Trans. Am. Math. Soc., Tome 2 (1901), pp. 103-138 | Article | Zbl 32.0130.02

[7] Dieleufait, Luis V. Explicit determination of the images of the Galois representations attached to abelian surfaces with End(A)=, Exp. Math., Tome 11 (2002) no. 4, pp. 503-512 | Article | Zbl 1162.11347

[8] Dvornicich, Roberto; Zannier, Umberto Local-global divisibility of rational points in some commutative algebraic groups, Bull. Soc. Math. Fr., Tome 129 (2001) no. 3, pp. 317-338 | Article | Zbl 0987.14016

[9] Dvornicich, Roberto; Zannier, Umberto An analogue for elliptic curves of the Grunwald-Wang example, C. R., Math., Acad. Sci. Paris, Tome 338 (2004) no. 1, pp. 47-50 | Article | Zbl 1035.14007

[10] Dvornicich, Roberto; Zannier, Umberto On local-global principle for the divisibility of a rational point by a positive integer, Bull. Lond. Math. Soc., Tome 39 (2007), pp. 27-34 | Article | Zbl 1115.14011

[11] Katz, Nicholas M. Galois properties of torsion points on abelian varieties, Invent. Math., Tome 62 (1981), pp. 481-502 | Article | Zbl 0471.14023

[12] Lawson, Tyler; Wuthrich, Christian Vanishing of some Galois cohomology groups of elliptic curves, Elliptic Curves, Modular Forms and Iwasawa Theory (Cambridge, 2015), Springer (Springer Proceedings in Mathematics and Statistics) Tome 188 (2017), pp. 373-399 | Zbl 06740248

[13] Lombardo, Davide Explicity surjectivity of Galois representations for abelian surfaces and GL 2 -type varieties, J. Algebra, Tome 460 (2016), pp. 26-59 | Article | Zbl 1343.11058

[14] Merel, Loïc Bornes pour la torsion des courbes elliptiques sur les corps de nombres, Invent. Math., Tome 124 (1996) no. 1-3, pp. 437-449 | Article | Zbl 0936.11037

[15] Paladino, Laura Local-global divisibility by 4 in elliptic curves defined over , Ann. Mat. Pura Appl., Tome 189 (2010) no. 4, pp. 17-23 | Article | Zbl 1208.11074

[16] Paladino, Laura On counterexamples to local-global divisibility in commutative algebraic groups, Acta Arith., Tome 148 (2011) no. 1, pp. 21-29 | Article | Zbl 1226.14041

[17] Paladino, Laura; Ranieri, Gabriele; Viada, Evelina Local-Global Divisibility by p n in elliptic curves, Bull. Lond. Math. Soc., Tome 44 (2012) no. 4, pp. 789-802 | Article | Zbl 1254.11056

[18] Paladino, Laura; Ranieri, Gabriele; Viada, Evelina On the minimal set for counterexamples to the Local-Global Divisibility principle, J. Algebra, Tome 415 (2014), pp. 290-304 | Article | Zbl 1321.11063

[19] Sansuc, Jean-Jacques Groupe de Brauer et arithméthique des groupes linéaires sur un corps de nombres, J. Reine Angew. Math., Tome 327 (1981), pp. 12-80 | Zbl 0468.14007

[20] Serre, Jean-Pierre Proprietés Galoisiennes des points d’ordre fini des courbes elliptiques, Invent. Math., Tome 15 (1972), pp. 259-331 | Article | Zbl 0235.14012

[21] Suzuki, Michio Group Theory I, Springer, Grundlehren der mathematischen Wissenschaften, Tome 247 (1982), xiv+434 pages | Zbl 0472.20001

[22] Trost, Ernst Zur theorie des Potenzreste, Nieuw Arch. Wiskd., Tome 18 (1948) no. 2, pp. 58-61 | Zbl 0009.29801