On homomorphisms between Cremona groups
Annales de l'Institut Fourier, Volume 68 (2018) no. 1, p. 53-100
We look at algebraic embeddings of the complex Cremona group in n variables Cr n to the group of birational transformations Bir(M) of an algebraic variety M. First we study geometrical properties of an example of an embedding of Cr 2 into Cr 5 that is due to Gizatullin. In a second part, we give a full classification of all algebraic embeddings of Cr 2 into Bir(M), where M is a variety of dimension 3 and generalize this result partially to algebraic embeddings of Cr n into Bir(M), where the dimension of M is n+1, for arbitrary n. In particular, this yields a classification of all algebraic PGL n+1 ()-actions on smooth projective varieties of dimension n+1 that can be extended to rational actions of Cr n .
On s’intéresse aux plongements algébriques du groupe de Cremona complexe à n variables Cr n dans des groupes de transformations birationnelles Bir(M) d’une varété algébrique M. D’abord on regarde un plongement de Cr 2 dans Cr 5 qui était découvert par Gizatullin. Puis on donne une classification de tous les plongements algébriques de Cr 2 dans Bir(M) pour des variétés M de dimension 3 et on généralise partiellement ce résultat aux plongements algébriques de Cr n dans Bir(M), où la dimension de M est n+1 (pour tout n). On obtient notamment une classification de toutes les action régulières de PGL n+1 () sur des variétés projectives lisses de dimension n+1 qui s’étendent vers des actions rationnelles de Cr n .
Received : 2016-04-25
Revised : 2016-12-05
Accepted : 2017-01-24
Published online : 2018-04-18
DOI : https://doi.org/10.5802/aif.3151
Classification:  14E07,  14L30,  32M05
Keywords: Cremona group, rational group actions, algebraic group actions
@article{AIF_2018__68_1_53_0,
     author = {Urech, Christian},
     title = {On homomorphisms between Cremona groups},
     journal = {Annales de l'Institut Fourier},
     publisher = {Association des Annales de l'institut Fourier},
     volume = {68},
     number = {1},
     year = {2018},
     pages = {53-100},
     doi = {10.5802/aif.3151},
     language = {en},
     url = {https://aif.centre-mersenne.org/item/AIF_2018__68_1_53_0}
}
On homomorphisms between Cremona groups. Annales de l'Institut Fourier, Volume 68 (2018) no. 1, pp. 53-100. doi : 10.5802/aif.3151. https://aif.centre-mersenne.org/item/AIF_2018__68_1_53_0/

[1] Akhiezer, Dmitri N. Lie group actions in complex analysis, Friedr. Vieweg & Sohn, Aspects of Mathematics, Tome 27 (1995), viii+201 pages | Article | Zbl 0845.22001

[2] Alberich-Carramiñana, Maria Geometry of the plane Cremona maps, Springer, Lecture Notes in Mathematics, Tome 1769 (2002), xvi+257 pages | Article | MR 1874328 (2002m:14008) | Zbl 0991.14008

[3] Artamkin, I. V. Stable bundles with c 1 =0 on rational surfaces, Izv. Akad. Nauk SSSR Ser. Mat., Tome 54 (1990) no. 2, pp. 227-241 | Zbl 0719.14008

[4] Beauville, Arnaud; Colliot-Thélène, Jean-Louis; Sansuc, Jean-Jacques; Swinnerton-Dyer, Peter Variétés stablement rationnelles non rationnelles, Ann. Math., Tome 121 (1985) no. 2, pp. 283-318 | Article | MR 786350 (86m:14009) | Zbl 0589.14042

[5] Białynicki-Birula, B. A. Remarks on the action of an algebraic torus on k n I, Bull. Acad. Pol. Sci., Sér. Sci. Math. Astron. Phys., Tome 14 (1966), pp. 177-181 | Zbl 0163.42901

[6] Blanc, Jérémy Conjugacy classes of affine automorphisms of 𝕂 n and linear automorphisms of n in the Cremona groups, Manuscr. Math., Tome 119 (2006) no. 2, pp. 225-241 | Article | MR 2215969 (2006m:14015) | Zbl 1093.14017

[7] Blanc, Jérémy Sous-groupes algébriques du groupe de Cremona, Transform. Groups, Tome 14 (2009) no. 2, pp. 249-285 | Article | MR 2504924 (2010b:14021) | Zbl 1181.14014

[8] Blanc, Jérémy Symplectic birational transformations of the plane, Osaka J. Math., Tome 50 (2013) no. 2, pp. 573-590 http://projecteuclid.org/euclid.ojm/1371833501 | MR 3080816 | Zbl 1291.14023

[9] Blanc, Jérémy; Déserti, Julie Degree growth of birational maps of the plane, Ann. Sc. Norm. Super. Pisa, Cl. Sci., Tome 14 (2015) no. 2, pp. 507-533 | MR 3410471 | Zbl 1342.14029

[10] Blanc, Jérémy; Furter, Jean-Philippe Topologies and structures of the Cremona groups, Ann. Math., Tome 178 (2013) no. 3, pp. 1173-1198 | Article | MR 3092478 | Zbl 1298.14020

[11] Blanc, Jérémy; Hedén, Isac The group of Cremona transformations generated by linear maps and the standard involution, Ann. Inst. Fourier, Tome 65 (2015) no. 6, pp. 2641-2680 | Article | Zbl 1333.14015

[12] Borel, Armand; Tits, Jacques Homomorphismes “abstraits” de groupes algébriques simples, Ann. Math., Tome 97 (1973), pp. 499-571 | Article | MR 0316587 (47 #5134) | Zbl 0272.14013

[13] Brion, Michel Spherical Varieties: An Introduction, Topological methods in algebraic transformation groups, Springer (Progress in Mathematics) Tome 80 (1989), pp. 11-26 | Zbl 0724.14034

[14] Brunella, Marco Feuilletages holomorphes sur les surfaces complexes compactes, Ann. Sci. Éc. Norm. Supér., Tome 30 (1997) no. 5, pp. 569-594 | Article | Zbl 0893.32019

[15] Cantat, Serge Endomorphismes des variétés homogènes, Enseign. Math., Tome 49 (2003) no. 3-4, pp. 237-262 | MR 2026896 | Zbl 1059.32003

[16] Cantat, Serge Morphisms between Cremona groups, and characterization of rational varieties, Compos. Math., Tome 150 (2014) no. 7, pp. 1107-1124 | Article | MR 3230847 | Zbl 1331.14020

[17] Cantat, Serge; Zeghib, Abdelghani Holomorphic actions, Kummer examples, and Zimmer program, Ann. Sci. Éc. Norm. Supér., Tome 45 (2012) no. 3, pp. 447-489 | Article | MR 3014483 | Zbl 1280.22015

[18] Cerveau, Dominique; Déserti, Julie Birational maps preserving the contact structure on 3 (2016) (http://arxiv.org/abs/1602.08866v1, to appear in J. Math. Soc. Japan)

[19] Corti, Alessio; Kaloghiros, Anne-Sophie The Sarkisov program for Mori fibred Calabi-Yau pairs, Algebr. Geom., Tome 3 (2016) no. 3, pp. 370-384 | Article | Zbl 06741272

[20] Demazure, Michel Sous-groupes algébriques de rang maximum du groupe de Cremona, Ann. Sci. Éc. Norm. Supér., Tome 3 (1970), pp. 507-588 | Article | MR 0284446 (44 #1672) | Zbl 0223.14009

[21] Déserti, Julie On the Cremona group: some algebraic and dynamical properties, Université Rennes 1 (France) (2006) https://tel.archives-ouvertes.fr/tel-00125492 (Theses)

[22] Déserti, Julie Sur les automorphismes du groupe de Cremona, Compos. Math., Tome 142 (2006) no. 6, pp. 1459-1478 | Article | MR 2278755 (2007g:14008) | Zbl 1109.14015

[23] Déserti, Julie Some properties of the group of birational maps generated by the automorphisms of n and the standard involution (2015), pp. 893-905 (http://arxiv.org/abs/1403.0346v1 ) | Zbl 1331.14018

[24] Dieudonné, Jean A. La géométrie des groupes classiques, Springer, Ergebnisse der Mathematik und ihrer Grenzgebiete, Tome 5 (1971), viii+129 pages | MR 0310083 (46 #9186) | Zbl 0221.20056

[25] Diller, Jeffrey; Lin, Jan-Li Rational surface maps with invariant meromorphic two-forms, Math. Ann., Tome 364 (2016) no. 1-2, pp. 313-352 | Article | MR 3451389 | Zbl 06540657

[26] Dolgachev, Igor V. Classical algebraic geometry. A modern view, Cambridge Univ. Press (2012), xii+639 pages (A modern view) | Article | MR 2964027 | Zbl 1252.14001

[27] Enriques, Federigo Sui gruppi continui di trasformazioni cremoniane nel piano, Rend. Accad. Lincei, 1er sem, Tome 5 (1893) no. 1, pp. 468-473 | Zbl 25.0643.02

[28] Fulton, William; Harris, Joe Representation theory. A first course, Springer, Graduate Texts in Mathematics, Tome 129 (1991), xvi+551 pages | Article | Zbl 0744.22001

[29] Gizatullin, Marat On some tensor representations of the Cremona group of the projective plane, New trends in algebraic geometry (Warwick, 1996), Cambridge University Press (London Math. Soc. Lecture Note Ser.) Tome 264 (1999), pp. 111-150 | Article | MR 1714823 (2000i:14018) | Zbl 0980.14011

[30] Gizatullin, Marat Klein’s conjecture for contact automorphisms of the three-dimensional affine space, Mich. Math. J., Tome 56 (2008) no. 1, pp. 89-98 | Article | MR 2433658 | Zbl 1159.14008

[31] De La Harpe, Pierre Topics in geometric group theory, University of Chicago Press, Chicago Lectures in Mathematics (2000), vi+310 pages | MR 1786869 (2001i:20081) | Zbl 0965.20025

[32] Hudson, Hilda P. Cremona transformation in Plane and Space, Cambridge University Press (1927)

[33] Humphreys, James E. Linear algebraic groups, Springer, Graduate Texts in Mathematics, Tome 21 (1975), xiv+247 pages | Zbl 0325.20039

[34] Lamy, Stéphane Une preuve géométrique du théorème de Jung, Enseign. Math., Tome 48 (2002) no. 3-4, pp. 291-315 | MR 1955604 (2003m:14099) | Zbl 1044.14035

[35] Lamy, Stéphane On the genus of birational maps between threefolds, Automorphisms in birational and affine geometry, Springer (Springer Proceedings in Mathematics & Statistics) Tome 79 (2014), pp. 141-147 | Article | MR 3229349 | Zbl 1326.14024

[36] Pan, Ivan Une remarque sur la génération du groupe de Cremona, Bol. Soc. Bras. Mat., Nova Sér., Tome 30 (1999) no. 1, pp. 95-98 | Article | MR 1686984 (2000b:14015) | Zbl 0972.14006

[37] Popov, Vladimir L. Tori in the Cremona groups, Izv. Ross. Akad. Nauk Ser. Mat., Tome 77 (2013) no. 4, pp. 103-134 | MR 3135700 | Zbl 1278.14065

[38] Procesi, Claudio Lie groups. An approach through invariants and representations, Springer, Universitext (2007), xxiv+596 pages | MR 2265844 (2007j:22016) | Zbl 1154.22001

[39] Serre, Jean-Pierre Local fields, Springer, Graduate Texts in Mathematics, Tome 67 (1979), viii+241 pages (Translated from the French by Marvin Jay Greenberg) | MR 554237 (82e:12016) | Zbl 0423.12016

[40] Serre, Jean-Pierre Le groupe de Cremona et ses sous-groupes finis, Séminaire Bourbaki 2008/2009, Société Mathématique de France (Astérisque) Tome 332 (2010), pp. 75-100 | Zbl 1257.14012

[41] Stampfli, Immanuel A note on automorphisms of the affine Cremona group, Math. Res. Lett., Tome 20 (2013) no. 6, pp. 1177-1181 | Article | MR 3228629 | Zbl 1304.14017

[42] Sumihiro, Hideyasu Equivariant completion, J. Math. Kyoto Univ., Tome 14 (1974), pp. 1-28 | Article | MR 0337963 | Zbl 0277.14008

[43] Umemura, Hiroshi Maximal algebraic subgroups of the Cremona group of three variables. Imprimitive algebraic subgroups of exceptional type, Nagoya Math. J., Tome 87 (1982), pp. 59-78 http://projecteuclid.org/euclid.nmj/1118786899 | Article | MR 676586 (84b:14005) | Zbl 0466.14005

[44] Umemura, Hiroshi On the maximal connected algebraic subgroups of the Cremona group. I, Nagoya Math. J., Tome 88 (1982), pp. 213-246 http://projecteuclid.org/euclid.nmj/1118787013 | Article | MR 683251 (84g:14013) | Zbl 0476.14004

[45] Umemura, Hiroshi On the maximal connected algebraic subgroups of the Cremona group. II, Algebraic groups and related topics (Kyoto/Nagoya, 1983), North-Holland, Amsterdam (Adv. Stud. Pure Math.) Tome 6 (1985), pp. 349-436 | MR 803342 (87d:14008) | Zbl 0571.14006

[46] Urech, Christian Subgroups of Cremona groups, University of Basel (Switzerland) / University of Rennes 1 (France) (2017) (Ph. D. Thesis)

[47] Weil, André On algebraic groups of transformations, Am. J. Math., Tome 77 (1955), pp. 355-391 | Article | Zbl 0065.14201

[48] Williams, A. R. Birational transformations in 4-space and 5-space, Bull. Am. Math. Soc., Tome 44 (1938) no. 4, pp. 272-278 | Article | MR 1563724 | Zbl 0018.27201

[49] Zaitsev, Dmitri Regularization of birational group operations in the sense of Weil, J. Lie Theory, Tome 5 (1995) no. 2, pp. 207-224 | Zbl 0873.14012

[50] Zhang, De-Qi The g-periodic subvarieties for an automorphism g of positive entropy on a compact Kähler manifold, Adv. Math., Tome 223 (2010) no. 2, pp. 405-415 | Article | MR 2565534 | Zbl 1181.32023