SRB measures for higher dimensional singular partially hyperbolic attractors
Annales de l'Institut Fourier, Volume 67 (2017) no. 6, p. 2703-2717
We prove the existence and the uniqueness of the SRB measure for any singular hyperbolic attractor in dimension d3. The proof does not use Poincaré sectional maps, but uses basic properties of thermodynamical formalism.
Nous prouvons que tout attracteur partiellement hyperbolique de dimension finie et avec singularité(s) admet une unique mesure SRB. La preuve utilise des outils simples et généraux du formalisme thermodynamique et ne nécessite pas de recourir à une section de Poincaré.
Received : 2016-01-14
Revised : 2017-01-31
Accepted : 2017-03-01
Published online : 2017-12-14
DOI : https://doi.org/10.5802/aif.3148
Classification:  37A35,  37A60,  37D20,  37D35,  47N10
Keywords: partially hyperbolic singular flows, thermodynamical formalism, equilibrium states, SRB and physical measures
@article{AIF_2017__67_6_2703_0,
     author = {Leplaideur, Renaud and Yang, Dawei},
     title = {SRB measures for higher dimensional singular partially hyperbolic attractors},
     journal = {Annales de l'Institut Fourier},
     publisher = {Association des Annales de l'institut Fourier},
     volume = {67},
     number = {6},
     year = {2017},
     pages = {2703-2717},
     doi = {10.5802/aif.3148},
     language = {en},
     url = {https://aif.centre-mersenne.org/item/AIF_2017__67_6_2703_0}
}
Leplaideur, Renaud; Yang, Dawei. SRB measures for higher dimensional singular partially hyperbolic attractors. Annales de l'Institut Fourier, Volume 67 (2017) no. 6, pp. 2703-2717. doi : 10.5802/aif.3148. https://aif.centre-mersenne.org/item/AIF_2017__67_6_2703_0/

[1] Araújo, Vítor; Pacifico, Maria José; Pujals, Enrique Ramiro; Viana, Marcelo Singular-hyperbolic attractors are chaotic, Trans. Am. Math. Soc., Tome 361 (2009) no. 5, pp. 2431-2485 | Article | MR 2471925 | Zbl 1214.37010

[2] Arroyo, Aubin; Pujals, Enrique R. Dynamical properties of singular-hyperbolic attractors, Discrete Contin. Dyn. Syst., Tome 19 (2007) no. 1, pp. 67-87 | Article | MR 2318274 | Zbl 1200.37021

[3] Bowen, Rufus Equilibrium states and the ergodic theory of Anosov diffeomorphisms, Springer, Lecture Notes in Mathematics, Tome 470 (2008), viii+75 pages | MR 2423393 | Zbl 1172.37001

[4] Bowen, Rufus; Ruelle, David The ergodic theory of Axiom A flows, Invent. Math., Tome 29 (1975) no. 3, pp. 181-202 | Article | MR 0380889 | Zbl 0311.58010

[5] Buzzi, Jérôme No or infinitely many a.c.i.p. for piecewise expanding C r maps in higher dimensions, Commun. Math. Phys., Tome 222 (2001) no. 3, pp. 495-501 | Article | MR 1888086 | Zbl 1001.37003

[6] Colmenárez, W. SRB measures for singular hyperbolic attractors, Universidade Federal do Rio de Janeiro (Brazil) (2002) (Ph. D. Thesis)

[7] Cowieson, William; Young, Lai-Sang SRB measures as zero-noise limits, Ergodic Theory Dyn. Syst., Tome 25 (2005) no. 4, pp. 1115-1138 | Article | MR 2158399 | Zbl 1098.37020

[8] Crovisier, Sylvain; Potrie, Rafael Introduction to partially hyperbolic dynamics (2015) (www.crm.umontreal.ca/sms/2017/pdf/diapos/00-CP-Trieste-Version1.pdf )

[9] Hirsch, Morris W.; Pugh, Charles Chapman; Shub, Michael Invariant manifolds, Springer, Lecture Notes in Mathematics, Tome 583 (1977), ii+149 pages | MR 0501173

[10] Katok, Anatole; Hasselblatt, Boris Introduction to the modern theory of dynamical systems, Cambridge University Press, Encyclopedia of Mathematics and its Applications, Tome 54 (1995), xviii+802 pages (With a supplementary chapter by Katok and Leonardo Mendoza) | Article | MR 1326374 | Zbl 0878.58020

[11] Ledrappier, François Propriétés ergodiques des mesures de Sinaï, Publ. Math., Inst. Hautes Étud. Sci. (1984) no. 59, pp. 163-188 | Article | MR 743818 | Zbl 0561.58037

[12] Ledrappier, François; Young, Lai-Sang The metric entropy of diffeomorphisms. I. Characterization of measures satisfying Pesin’s entropy formula, Ann. Math., Tome 122 (1985) no. 3, pp. 509-539 | Article | MR 819556 | Zbl 0605.58028

[13] Lorenz, Edward N. Deterministic non-periodic flow, J. Atmospheric Sci., Tome 20 (1963), pp. 130-141 | Article

[14] Marsden, Jerrold Eldon; Mccracken, Marjorie F. The Hopf bifurcation and its applications, Springer-Verlag, New York, Applied Mathematical Sciences, Tome 19 (1976), xiii+408 pages | MR 0494309 | Zbl 0346.58007

[15] Metzger, Roger J.; Morales, Carlos Arnoldo Sectional-hyperbolic systems, Ergodic Theory Dyn. Syst., Tome 28 (2008) no. 5, pp. 1587-1597 | Article | MR 2449545 | Zbl 1165.37010

[16] Morales, Carlos Arnoldo; Pacifico, Maria José; Pujals, Enrique Ramiro Robust transitive singular sets for 3-flows are partially hyperbolic attractors or repellers, Ann. Math., Tome 160 (2004) no. 2, pp. 375-432 | Article | MR 2123928 | Zbl 1071.37022

[17] Pesin, Yakov B. Lectures on partial hyperbolicity and stable ergodicity, European Mathematical Society (EMS), Zurich Lectures in Advanced Mathematics (2004), vi+122 pages | Article | MR 2068774 | Zbl 1098.37024

[18] Qiu, Hao Existence and uniqueness of SRB measure on C 1 generic hyperbolic attractors, Commun. Math. Phys., Tome 302 (2011) no. 2, pp. 345-357 | Article | MR 2770016 | Zbl 1214.37018

[19] Ruelle, David A measure associated with axiom-A attractors, Am. J. Math., Tome 98 (1976) no. 3, pp. 619-654 | Article | MR 0415683 | Zbl 0355.58010

[20] Sinaĭ, Yakov Grigor?Evich Gibbs measures in ergodic theory, Usp. Mat. Nauk, Tome 27 (1972) no. 4(166), pp. 21-64 | MR 0399421 | Zbl 0246.28008

[21] Tsujii, Masato Piecewise expanding maps on the plane with singular ergodic properties, Ergodic Theory Dyn. Syst., Tome 20 (2000) no. 6, pp. 1851-1857 | Article | MR 1804960 | Zbl 0992.37018

[22] Walters, Peter An introduction to ergodic theory, Springer, Graduate Texts in Mathematics, Tome 79 (1982), ix+250 pages | MR 648108 | Zbl 0475.28009

[23] Yang, Jiangang (Online video, http://video.impa.br/index.php?page=international-conference-on-dynamical-system)

[24] Yang, Jiangang Topological entropy of Lorenz-like flows (2014) (https://arxiv.org/abs/1412.1207 )

[25] Young, Lai-Sang What are SRB measures, and which dynamical systems have them?, J. Stat. Phys., Tome 108 (2002) no. 5-6, pp. 733-754 (Dedicated to David Ruelle and Yasha Sinai on the occasion of their 65th birthdays) | Article | MR 1933431 | Zbl 1124.37307

[26] Zhu, Shengzhi; Gan, Shaobo; Wen, Lan Indices of singularities of robustly transitive sets, Discrete Contin. Dyn. Syst., Tome 21 (2008) no. 3, pp. 945-957 | Article | MR 2399444 | Zbl 1148.37020