Quasimorphismes sur le monoïde libre, et substitutions dans les mesures invariantes  [ Quasimorphisms on the free monoid, and substitutions in invariant measures ]
Annales de l'Institut Fourier, Volume 67 (2017) no. 6, p. 2651-2678
It will be shown how a morphism σ:A B between two finitely generated free monoids can transform an invariant mesure on A into an invariant measure on B . The existence of this operation is intimately related to a representation result for homogeneous quasimorphisms on the free monoid. Its properties will be studied, in particular with respect to the rearrangement distance.
On montre comment un morphisme σ:A B entre deux monoïdes libres de type fini peut transformer une mesure invariante sur A en une mesure invariante sur B . L’existence de cette opération est intimement liée à un résultat de représentation des quasimorphismes homogènes sur le monoïde libre. On étudiera ses propriétés, en particulier vis-à-vis de la distance de réarrangement.
Received : 2013-04-10
Revised : 2015-08-17
Accepted : 2016-12-06
Published online : 2017-12-14
DOI : https://doi.org/10.5802/aif.3146
Classification:  20M50,  37B10
Keywords: quasimorphism, substitution, rearrangement norm
@article{AIF_2017__67_6_2651_0,
     author = {Bousch, Thierry},
     title = {Quasimorphismes sur le mono\"\i de libre, et substitutions dans les mesures invariantes},
     journal = {Annales de l'Institut Fourier},
     publisher = {Association des Annales de l'institut Fourier},
     volume = {67},
     number = {6},
     year = {2017},
     pages = {2651-2678},
     doi = {10.5802/aif.3146},
     language = {fr},
     url = {https://aif.centre-mersenne.org/item/AIF_2017__67_6_2651_0}
}
Bousch, Thierry. Quasimorphismes sur le monoïde libre, et substitutions dans les mesures invariantes. Annales de l'Institut Fourier, Volume 67 (2017) no. 6, pp. 2651-2678. doi : 10.5802/aif.3146. https://aif.centre-mersenne.org/item/AIF_2017__67_6_2651_0/

[1] Abramov, L. M. The entropy of a derived automorphism, Doklady Akad. Nauk SSSR, Tome 128 (1959), pp. 647-650

[2] Bavard, Christophe Longueur stable des commutateurs, Enseign. Math., Tome 37 (1991) no. 1-2, pp. 109-150 | Zbl 0810.20026

[3] Bezuglyi, Sergey I.; Kwiatkowski, Jan; Medynets, Konstantin; Solomyak, Boris Invariant measures on stationary Bratteli diagrams, Ergodic Theory Dyn. Syst., Tome 30 (2010) no. 4, pp. 973-1007 | Article | Zbl 1205.37009

[4] Bousch, Thierry La distance de réarrangement, duale de la fonctionnelle de Bowen, Ergodic Theory Dyn. Syst., Tome 32 (2012) no. 3, pp. 845-868 | Article | Zbl 1282.37013

[5] Bousch, Thierry; Mairesse, Jean Asymptotic height optimization for topical IFS, Tetris heaps, and the finiteness conjecture, J. Am. Math. Soc., Tome 15 (2002) no. 1, pp. 77-111 | Article | Zbl 1057.49007

[6] Calegari, Danny scl, Mathematical Society of Japan, MSJ Memoirs, Tome 20 (2009), xii+209 pages | Zbl 1187.20035

[7] Cornfeld, I. P.; Fomin, Sergey Vasil’Evich; Sinaĭ, Yakov Grigor’Evich Ergodic theory, Springer, Grundlehren der mathematischen Wissenschaften, Tome 245 (1982), x+486 pages | Zbl 0493.28007

[8] Ferenczi, Sebastien; Fisher, Albert M.; Talet, Marina Minimality and unique ergodicity for adic transformations, J. Anal. Math., Tome 109 (2009), pp. 1-31 | Article | Zbl 1218.37011

[9] Fisher, Albert M. Nonstationary mixing and the unique ergodicity of adic transformations, Stoch. Dyn., Tome 9 (2009) no. 3, pp. 335-391 | Article | Zbl 1231.28014

[10] Kapovich, Ilya The frequency space of a free group, Internat. J. Algebra Comput., Tome 15 (2005) no. 5-6, pp. 939-969 | Article | Zbl 1110.20031

[11] Kotschick, Dieter What is ...a quasi-morphism ?, Notices Am. Math. Soc., Tome 51 (2004) no. 2, p. 208-209 | Zbl 1064.20033

[12] Morse, Marston; Hedlund, Gustav A. Symbolic dynamics II. Sturmian trajectories, Am. J. Math., Tome 62 (1940), pp. 1-42 | Article | Zbl 0022.34003

[13] Phelps, Robert Ralph Lectures on Choquet’s theorem, Van Nostrand (1966), v+130 pages | Zbl 0135.36203

[14] Vershik, Anatoli Moiseevich; Livshits, A. N. Adic models of ergodic transformations, spectral theory, substitutions, and related topics, Representation theory and dynamical systems, American Mathematical Society (Advances in Soviet Mathematics) Tome 9 (1992), pp. 185-204 | Zbl 0770.28013