Embedding problems for open subgroups of the fundamental group
Annales de l'Institut Fourier, Volume 67 (2017) no. 6, p. 2623-2649
Let C be a smooth irreducible affine curve over an algebraically closed field of positive characteristic and let π 1 (C) be its fundamental group. We study various embedding problems for π 1 (C) and its subgroups.
Soit C une courbe affine irréductible lisse sur un corps algébriquement fermé de caractéristique positive et soit π 1 (C) son groupe fondamental. Nous étudions divers problèmes de plongement pour π 1 (C) et ses sous-groupes.
Received : 2015-09-22
Revised : 2017-03-21
Accepted : 2017-04-28
Published online : 2017-12-14
DOI : https://doi.org/10.5802/aif.3145
Classification:  14H30,  14G32,  12F10
Keywords: ramification, embedding problem, fundamental group, positive characteristic, formal patching
@article{AIF_2017__67_6_2623_0,
     author = {Kumar, Manish},
     title = {Embedding problems for open subgroups of the fundamental group},
     journal = {Annales de l'Institut Fourier},
     publisher = {Association des Annales de l'institut Fourier},
     volume = {67},
     number = {6},
     year = {2017},
     pages = {2623-2649},
     doi = {10.5802/aif.3145},
     language = {en},
     url = {https://aif.centre-mersenne.org/item/AIF_2017__67_6_2623_0}
}
Kumar, Manish. Embedding problems for open subgroups of the fundamental group. Annales de l'Institut Fourier, Volume 67 (2017) no. 6, pp. 2623-2649. doi : 10.5802/aif.3145. https://aif.centre-mersenne.org/item/AIF_2017__67_6_2623_0/

[1] Bary-Soroker, Lior; Kumar, Manish Subgroup structure of fundamental groups in positive characteristic, Commun. Algebra, Tome 41 (2013) no. 10, pp. 3705-3719 | Article | MR 3169483 | Zbl 1276.14044

[2] Eisenbud, David Commutative algebra, Springer, Graduate Texts in Mathematics, Tome 150 (1995), xvi+785 pages (With a view toward algebraic geometry) | Article | MR 1322960 | Zbl 0819.13001

[3] Grothendieck, Alexander Revêtements étales et groupe fondamental (SGA 1), Société Mathématique de France, Documents Mathématiques (Paris, Tome 3 (2003), xviii+327 pages (With two papers by M. Raynaud, Updated and annotated reprint of the 1971 original (Lecture Notes in Math., 224, Springer)) | MR 2017446 | Zbl 1039.14001

[4] Harbater, David Abhyankar’s conjecture on Galois groups over curves, Invent. Math., Tome 117 (1994) no. 1, pp. 1-25 | Article | MR 1269423 | Zbl 0805.14014

[5] Harbater, David Embedding problems and adding branch points, Aspects of Galois theory (Gainesville, FL, 1996), Cambridge University Press (London Math. Soc. Lecture Note Ser.) Tome 256 (1999), pp. 119-143 | MR 1708604 | Zbl 0992.14009

[6] Harbater, David Abhyankar’s conjecture and embedding problems, J. Reine Angew. Math., Tome 559 (2003), pp. 1-24 | Article | MR 1989642 | Zbl 1075.14026

[7] Harbater, David Patching and Galois theory, Galois groups and fundamental groups, Cambridge University Press (Math. Sci. Res. Inst. Publ.) Tome 41 (2003), pp. 313-424 | MR 2012220 | Zbl 1071.14026

[8] Harbater, David; Stevenson, Katherine Embedding problems and open subgroups, Proc. Am. Math. Soc., Tome 139 (2011) no. 4, pp. 1141-1154 | Article | MR 2748409 | Zbl 1231.14019

[9] Kumar, Manish Fundamental group in positive characteristic, J. Algebra, Tome 319 (2008) no. 12, pp. 5178-5207 | Article | MR 2423823 | Zbl 1197.14026

[10] Kumar, Manish The fundamental group of affine curves in positive characteristic, J. Algebra, Tome 399 (2014), pp. 323-342 | Article | MR 3144591 | Zbl 1329.14066

[11] Kumar, Manish On the compositum of wildly ramified extensions, J. Pure Appl. Algebra, Tome 218 (2014) no. 8, pp. 1528-1536 | Article | MR 3175037 | Zbl 1297.11142

[12] Pop, Florian Étale Galois covers of affine smooth curves. The geometric case of a conjecture of Shafarevich. On Abhyankar’s conjecture, Invent. Math., Tome 120 (1995) no. 3, pp. 555-578 | Article | MR 1334484 | Zbl 0842.14017

[13] Pries, Rachel J. Families of wildly ramified covers of curves, Am. J. Math., Tome 124 (2002) no. 4, pp. 737-768 http://muse.jhu.edu/journals/american_journal_of_mathematics/v124/124.4pries.pdf | Article | MR 1914457 | Zbl 1059.14033

[14] Raynaud, Michel Revêtements de la droite affine en caractéristique p>0 et conjecture d’Abhyankar, Invent. Math., Tome 116 (1994) no. 1-3, pp. 425-462 | Article | MR 1253200 | Zbl 0798.14013