Counterexamples to Ruelle’s inequality in the noncompact case
[Contre-exemples à l’inégalité de Ruelle dans le cas noncompact]
Annales de l'Institut Fourier, Tome 67 (2017) no. 1, pp. 23-41.

Dans cet article nous montrons qu’il existe des systèmes dynamiques lisses définis sur des variétés riemanniennes non compactes qui ne satisfont pas l’inégalité de Ruelle entre l’entropie et les exposants de Lyapounov. Plus précisément, nous construisons des systèmes dynamiques qui ressemblent aux flots de suspension au-dessus de transformations d’échanges d’intervalles dénombrables, de sorte que le comportement local est celui d’une translation, alors que l’entropie peut prendre n’importe quelle valeur non nulle.

In this paper we show that there exist smooth dynamical systems defined on noncompact Riemannian manifolds that do not satisfy Ruelle’s inequality between entropy and Lyapunov exponents. More precisely, we construct dynamical systems that look like suspension flows over countable interval exchange transformations, so that the local behavior is that of a translation, whereas the entropy can take any nonzero value.

Reçu le :
Révisé le :
Accepté le :
Publié le :
DOI : https://doi.org/10.5802/aif.3076
Classification : 37A05,  37A35,  37C05,  37C10,  37C40
Mots clés : théorie ergodique, géométrie riemannienne, systèmes dynamiques lisses, exposants de Lyapounov, inégalité de Ruelle.
@article{AIF_2017__67_1_23_0,
     author = {Riquelme, Felipe},
     title = {Counterexamples to Ruelle{\textquoteright}s inequality in the noncompact case},
     journal = {Annales de l'Institut Fourier},
     pages = {23--41},
     publisher = {Association des Annales de l{\textquoteright}institut Fourier},
     volume = {67},
     number = {1},
     year = {2017},
     doi = {10.5802/aif.3076},
     language = {en},
     url = {https://aif.centre-mersenne.org/articles/10.5802/aif.3076/}
}
Riquelme, Felipe. Counterexamples to Ruelle’s inequality in the noncompact case. Annales de l'Institut Fourier, Tome 67 (2017) no. 1, pp. 23-41. doi : 10.5802/aif.3076. https://aif.centre-mersenne.org/articles/10.5802/aif.3076/

[1] Aaronson, Jon An introduction to infinite ergodic theory, Mathematical Surveys and Monographs, Tome 50, American Mathematical Society, Providence, RI, 1997, xii+284 pages | Article

[2] Arnoux, Pierre; Ornstein, Donald S.; Weiss, Benjamin Cutting and stacking, interval exchanges and geometric models, Israel J. Math., Tome 50 (1985) no. 1-2, pp. 160-168 | Article

[3] Blume, Frank An entropy estimate for infinite interval exchange transformations, Math. Z., Tome 272 (2012) no. 1-2, pp. 17-29 | Article

[4] Katok, Anatole; Strelcyn, Jean-Marie; Ledrappier, F.; Przytycki, F. Invariant manifolds, entropy and billiards; smooth maps with singularities, Lecture Notes in Mathematics, Tome 1222, Springer-Verlag, Berlin, 1986, viii+283 pages

[5] Ledrappier, F. Quelques propriétés des exposants caractéristiques, École d’été de probabilités de Saint-Flour, XII—1982 (Lecture Notes in Math.) Tome 1097, Springer, Berlin, 1984, pp. 305-396 | Article

[6] Losert, Viktor; Schmidt, Klaus A class of probability measures on groups arising from some problems in ergodic theory, Probability measures on groups (Proc. Fifth Conf., Oberwolfach, 1978) (Lecture Notes in Math.) Tome 706, Springer, Berlin, 1979, pp. 220-238

[7] Nomizu, Katsumi; Ozeki, Hideki The existence of complete Riemannian metrics, Proc. Amer. Math. Soc., Tome 12 (1961), pp. 889-891

[8] Oseledec, V. I. A multiplicative ergodic theorem. Characteristic Ljapunov, exponents of dynamical systems, Trudy Moskov. Mat. Obšč., Tome 19 (1968), pp. 179-210

[9] Ruelle, David An inequality for the entropy of differentiable maps, Bol. Soc. Brasil. Mat., Tome 9 (1978) no. 1, pp. 83-87 | Article

[10] Walters, Peter An introduction to ergodic theory, Graduate Texts in Mathematics, Tome 79, Springer-Verlag, New York-Berlin, 1982, ix+250 pages