A complex in Morse theory computing intersection homology
Annales de l'Institut Fourier, Volume 67 (2017) no. 1, p. 197-236
Let X be a space with isolated conical singularities. The aim of this article is to establish, using anti-radial Morse functions on X, a combinatorial complex which computes the intersection homology of X. The complex constructed here, is generated by the smooth critical points of the Morse function and representatives of the de Rham cohomology (in low degree) of the link manifolds of the singularities of X. It can be seen as an analogue of the famous Thom-Smale complex for smooth Morse functions and singular homology on a compact manifold. The article also discusses the homotopy principle familiar in smooth Morse homology in this singular context.
Dans cet article on associe à une fonction de Morse f anti-radiale sur un espace singulier X à singularités coniques un complexe généré par les points critiques de f et par certaines formes sur le link de la singularité. Ce complexe calcule de façon canonique l’homologie d’intersection. Également on discute le comportement de ce complexe par rapport aux homotopies. Le complexe construit dans cet article est un analogue du complexe de Thom-Smale sur une variété lisse pour une fonction de Morse lisse et l’homologie singulière.
Received : 2014-07-25
Revised : 2015-06-23
Accepted : 2015-09-10
Published online : 2017-01-10
Classification:  55N33,  58A35,  58K05,  57R70
Keywords: intersection homology, Morse theory, radial vector fields, Thom-Smale complex
@article{AIF_2017__67_1_197_0,
     author = {Ludwig, Ursula},
     title = {A complex in Morse theory computing intersection homology},
     journal = {Annales de l'Institut Fourier},
     publisher = {Association des Annales de l'institut Fourier},
     volume = {67},
     number = {1},
     year = {2017},
     pages = {197-236},
     language = {en},
     url = {https://aif.centre-mersenne.org/item/AIF_2017__67_1_197_0}
}
Ludwig, Ursula. A complex in Morse theory computing intersection homology. Annales de l'Institut Fourier, Volume 67 (2017) no. 1, pp. 197-236. https://aif.centre-mersenne.org/item/AIF_2017__67_1_197_0/

[1] Akaho, Manabu Morse homology and manifolds with boundary, Commun. Contemp. Math., Tome 9 (2007) no. 3, pp. 301-334 | Article

[2] Atiyah, M. F.; Bott, R. The Yang-Mills equations over Riemann surfaces, Philos. Trans. Roy. Soc. London Ser. A, Tome 308 (1983) no. 1505, pp. 523-615 | Article

[3] Austin, D. M.; Braam, P. J. Morse-Bott theory and equivariant cohomology, The Floer memorial volume, Birkhäuser, Basel (Progr. Math.) Tome 133 (1995), pp. 123-183

[4] Bismut, Jean-Michel; Zhang, Weiping An extension of a theorem by Cheeger and Müller, Astérisque (1992) no. 205, 235 pages (With an appendix by François Laudenbach)

[5] Bismut, Jean-Michel; Zhang, Weiping Milnor and Ray-Singer metrics on the equivariant determinant of a flat vector bundle, Geom. Funct. Anal., Tome 4 (1994) no. 2, pp. 136-212

[6] Bott, Raoul Lectures on Morse theory, old and new, Bull. Amer. Math. Soc. (N.S.), Tome 7 (1982) no. 2, pp. 331-358 | Article

[7] Bott, Raoul Morse theory indomitable, Inst. Hautes Études Sci. Publ. Math. (1988) no. 68, p. 99-114 (1989)

[8] Chang, Kung-Ching Infinite dimensional Morse theory and multiple solution problems., Boston: Birkhäuser (1993)

[9] Cheeger, Jeff Analytic torsion and the heat equation, Ann. of Math. (2), Tome 109 (1979) no. 2, pp. 259-322 | Article

[10] Cheeger, Jeff On the Hodge theory of Riemannian pseudomanifolds, Geometry of the Laplace operator (Proc. Sympos. Pure Math., Univ. Hawaii, Honolulu, Hawaii, 1979), Amer. Math. Soc., Providence, R.I. (Proc. Sympos. Pure Math., XXXVI) (1980), pp. 91-146

[11] Cheeger, Jeff; Goresky, Mark; Macpherson, Robert L 2 -cohomology and intersection homology of singular algebraic varieties, Seminar on Differential Geometry, Princeton Univ. Press, Princeton, N.J. (Ann. of Math. Stud.) Tome 102 (1982), pp. 303-340

[12] Dar, Aparna Intersection R-torsion and analytic torsion for pseudomanifolds, Math. Z., Tome 194 (1987) no. 2, pp. 193-216 | Article

[13] Floer, Andreas Witten’s complex and infinite-dimensional Morse theory, J. Differential Geom., Tome 30 (1989) no. 1, pp. 207-221 http://projecteuclid.org.revues.math.u-psud.fr:2048/euclid.jdg/1214443291

[14] Goresky, Mark Triangulation of stratified objects, Proc. Amer. Math. Soc., Tome 72 (1978) no. 1, pp. 193-200

[15] Goresky, Mark Whitney stratified chains and cochains, Trans. Amer. Math. Soc., Tome 267 (1981) no. 1, pp. 175-196 | Article

[16] Goresky, Mark; Macpherson, Robert Intersection homology theory, Topology, Tome 19 (1980) no. 2, pp. 135-162 | Article

[17] Goresky, Mark; Macpherson, Robert Intersection homology. II, Invent. Math., Tome 72 (1983) no. 1, pp. 77-129 | Article

[18] Goresky, Mark; Macpherson, Robert Simplicial Intersection Homology, Invent. Math., Tome 84 (1986) no. 2, p. 432-433 (Appendix to MacPherson, Robert and Vilonen, Kari “Elementary construction of perverse sheaves”) | Article

[19] Goresky, Mark; Macpherson, Robert Stratified Morse theory, Springer-Verlag, Berlin, Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)], Tome 14 (1988)

[20] Grinberg, Mikhail Gradient-like flows and self-indexing in stratified Morse theory, Topology, Tome 44 (2005) no. 1, pp. 175-202 | Article

[21] Hartmann, L.; Spreafico, M. The analytic torsion of a cone over a sphere, J. Math. Pures Appl. (9), Tome 93 (2010) no. 4, pp. 408-435 | Article

[22] Hartmann, L.; Spreafico, M. The analytic torsion of a cone over an odd dimensional manifold, J. Geom. Phys., Tome 61 (2011) no. 3, pp. 624-657 | Article

[23] Helffer, Bernard; Sjöstrand, Johannes Puits multiples en mécanique semi-classique. IV. Étude du complexe de Witten, Comm. Partial Differential Equations, Tome 10 (1985) no. 3, pp. 245-340

[24] Johnson, F. E. A. On the triangulation of stratified sets and singular varieties, Trans. Amer. Math. Soc., Tome 275 (1983) no. 1, pp. 333-343 | Article

[25] Kirwan, Frances; Woolf, Jonathan An introduction to intersection homology theory, Chapman & Hall/CRC, Boca Raton, FL (2006), xiv+229 pages | Article

[26] Kronheimer, Peter; Mrowka, Tomasz Monopoles and three-manifolds, Cambridge University Press, Cambridge, New Mathematical Monographs, Tome 10 (2007), xii+796 pages | Article

[27] Laudenbach, François Appendix: On the Thom-Smale complex, Astérisque (1992) no. 205, 235 pages

[28] Laudenbach, François A Morse complex on manifolds with boundary, Geom. Dedicata, Tome 153 (2011), pp. 47-57 | Article

[29] Laudenbach, François Transversalité, courants et théorie de Morse, Éditions de l’École Polytechnique, Palaiseau (2012), x+182 pages (Un cours de topologie différentielle. [A course of differential topology], Exercises proposed by François Labourie)

[30] Ludwig, Ursula Comparison between two complexes on a singular space (to appear in Journal für die reine und angewandte Mathematik (Crelle)) | Article

[31] Ludwig, Ursula Morse-Smale-Witten complex for gradient-like vector fields on stratified spaces, Singularity theory, World Sci. Publ., Hackensack, NJ (2007), pp. 683-713 | Article

[32] Milnor, J. Morse theory, Princeton University Press, Princeton, N.J., Based on lecture notes by M. Spivak and R. Wells. Annals of Mathematics Studies, No. 51 (1963), vi+153 pages

[33] Milnor, John Lectures on the h-cobordism theorem, Princeton University Press, Princeton, N.J., Notes by L. Siebenmann and J. Sondow (1965)

[34] Müller, Werner Analytic torsion and R-torsion of Riemannian manifolds, Adv. in Math., Tome 28 (1978) no. 3, pp. 233-305 | Article

[35] Müller, Werner Analytic torsion and R-torsion for unimodular representations, J. Amer. Math. Soc., Tome 6 (1993) no. 3, pp. 721-753 | Article

[36] Munkres, James R. Concordance is equivalent to smoothability, Topology, Tome 5 (1966), pp. 371-389

[37] Nicolaescu, Liviu An invitation to Morse theory, Springer, New York, Universitext (2011), xvi+353 pages | Article

[38] Pflaum, Markus J. Analytic and geometric study of stratified spaces, Springer-Verlag, Berlin, Lecture Notes in Mathematics, Tome 1768 (2001), viii+230 pages

[39] Ray, D. B.; Singer, I. M. R-torsion and the Laplacian on Riemannian manifolds, Advances in Math., Tome 7 (1971), pp. 145-210

[40] Schwartz, Marie-Hélène Classes caractéristiques définies par une stratification d’une variété analytique complexe. I, C. R. Acad. Sci. Paris, Tome 260 (1965), pp. 3262-3264

[41] Schwartz, Marie-Hélène Champs radiaux sur une stratification analytique, Hermann, Paris, Travaux en Cours [Works in Progress], Tome 39 (1991), x+185 pages

[42] Schwarz, Matthias Morse homology, Birkhäuser Verlag, Basel, Progress in Mathematics, Tome 111 (1993), x+235 pages | Article

[43] Smale, Stephen On gradient dynamical systems, Ann. of Math. (2), Tome 74 (1961), pp. 199-206

[44] Thom, René Sur une partition en cellules associée à une fonction sur une variété, C. R. Acad. Sci. Paris, Tome 228 (1949), pp. 973-975

[45] Trotman, David J. A. Geometric versions of Whitney regularity for smooth stratifications, Ann. Sci. École Norm. Sup. (4), Tome 12 (1979) no. 4, pp. 453-463

[46] Verona, Andrei Stratified mappings—structure and triangulability, Springer-Verlag, Berlin, Lecture Notes in Mathematics, Tome 1102 (1984), ix+160 pages

[47] Vertman, Boris Analytic torsion of a bounded generalized cone, Comm. Math. Phys., Tome 290 (2009) no. 3, pp. 813-860 | Article

[48] Wasserman, Arthur G. Equivariant differential topology, Topology, Tome 8 (1969), pp. 127-150

[49] Weber, Joa The Morse-Witten complex via dynamical systems, Expo. Math., Tome 24 (2006) no. 2, pp. 127-159 | Article

[50] Whitney, Hassler Local properties of analytic varieties, Differential and Combinatorial Topology (A Symposium in Honor of Marston Morse), Princeton Univ. Press, Princeton, N. J. (1965), pp. 205-244

[51] Witten, Edward Supersymmetry and Morse theory, J. Differential Geom., Tome 17 (1982) no. 4, p. 661-692 (1983)