Revised : 2015-02-28
Accepted : 2015-03-26
Published online : 2016-02-17
DOI : https://doi.org/10.5802/aif.3003
Classification: 53C15, 53D18, 53C55
Keywords: complex and generalized complex structures, holomorphic bundles, integrability, Lie groups, special complex geometry.
@article{AIF_2016__66_1_1_0, author = {David, Liana}, title = {On cotangent manifolds, complex structures and generalized geometry}, journal = {Annales de l'Institut Fourier}, publisher = {Association des Annales de l'institut Fourier}, volume = {66}, number = {1}, year = {2016}, pages = {1-28}, doi = {10.5802/aif.3003}, language = {en}, url = {https://aif.centre-mersenne.org/item/AIF_2016__66_1_1_0} }
David, Liana. On cotangent manifolds, complex structures and generalized geometry. Annales de l'Institut Fourier, Volume 66 (2016) no. 1, pp. 1-28. doi : 10.5802/aif.3003. https://aif.centre-mersenne.org/item/AIF_2016__66_1_1_0/
[1] Special complex manifolds, J. Geom. Phys., Tome 42 (2002) no. 1-2, pp. 85-105 | Article
[2] Invariant generalized complex structures on Lie groups, Proc. Lond. Math. Soc. (3), Tome 105 (2012) no. 4, pp. 703-729 | Article
[3] Lie Groups and Lie Algebras. Chapters 4–6, Springer-Verlag, New York, Elements of Math. (Berlin) (2002), xii+300 pages
[4] Hermitian connections and Dirac operators, Boll. Un. Mat. Ital. B (7), Tome 11 (1997) no. 2, suppl., pp. 257-288
[5] The sixteen classes of almost Hermitian manifolds and their linear invariants, Ann. Mat. Pura Appl. (4), Tome 123 (1980), pp. 35-58 | Article
[6] Generalized Complex Geometry, University of Oxford (2003) (Ph. D. Thesis)
[7] Differential Geometry and Symmetric Spaces, AMS Chelsea Publishing, American Mathematical Society, Providence, Rhode Island, Graduate Studies in Mathematics, Tome 34 (2001)
[8] Generalized Calabi-Yau manifolds, Q. J. Math., Tome 54 (2003) no. 3, pp. 281-308 | Article
[9] Lie Groups Beyond an Introduction, Birkhäuser Boston, Inc., Boston, MA, Progress in Mathematics, Tome 140 (1996), xvi+604 pages | Article
[10] Almost complex structures on cotangent bundles and generalized geometry, J. Geom. Phys., Tome 60 (2010) no. 11, pp. 1781-1791 | Article
[11] Lie Groups and Lie Algebras III, Springer-Verlag, Berlin, Encyclopaedia of Mathematical Sciences, Tome 41 (1994), iv+248 pages