Unique Continuation for Quasimodes on Surfaces of Revolution: Rotationally invariant Neighbourhoods
Annales de l'Institut Fourier, Volume 65 (2015) no. 4, p. 1617-1645
We introduce the definition of irreducible quasimodes, which are quasimodes with h-wavefront sets living on the smallest invariant sets in phase space. We prove a strong conditional unique continuation estimate for these quasimodes in rotationally invariant neighbourhoods on compact surfaces of revolution. The estimate states that irreducible Laplace quasimodes have L 2 mass bounded below by C ϵ λ -1-ϵ for any ϵ>0 on any open rotationally invariant neighbourhood which meets the semiclassical wavefront set of the quasimode. For an analytic manifold, we conclude the same estimate with a lower bound of C δ λ -1+δ for some fixed δ>0.
Nous introduisons la définition de quasimodes irréductibles, qui sont des quasimodes du laplacien dont les h-front d’onde est localisé sur les ensembles invariants minimaux de l’espace des phases. Nous prouvons une estimation de prolongement unique conditionnelle pour ces quasimodes sur les ensembles invariants par rotation des surfaces compactes de révolution. L’estimée affirme que les quasimodes ont une norme L 2 minorée par C ϵ λ -1-ϵ pour tout ϵ>0 et sur tout ensemble ouvert invariant par rotation qui intersecte le front d’onde semi-classique du quasimode. Si la surface est analytique, nous obtenons la même estimation minorée par C δ λ -1+δ pour δ>0 fixe.
Received : 2013-07-18
Revised : 2014-12-06
Accepted : 2015-01-29
Published online : 2015-11-09
Classification:  35P20,  35B60,  58J50
Keywords: Unique continuation, quasimode, irreducible quasimode, surface of revolution
@article{AIF_2015__65_4_1617_0,
     author = {Christianson, Hans},
     title = {Unique Continuation for Quasimodes on Surfaces of Revolution: Rotationally invariant Neighbourhoods},
     journal = {Annales de l'Institut Fourier},
     publisher = {Association des Annales de l'institut Fourier},
     volume = {65},
     number = {4},
     year = {2015},
     pages = {1617-1645},
     language = {en},
     url = {https://aif.centre-mersenne.org/item/AIF_2015__65_4_1617_0}
}
Unique Continuation for Quasimodes on Surfaces of Revolution: Rotationally invariant Neighbourhoods. Annales de l'Institut Fourier, Volume 65 (2015) no. 4, pp. 1617-1645. https://aif.centre-mersenne.org/item/AIF_2015__65_4_1617_0/

[1] Burq, Nicolas; Zworski, Maciej Geometric control in the presence of a black box, J. Amer. Math. Soc., Tome 17 (2004) no. 2, p. 443-471 (electronic) | Article | MR 2051618 | Zbl 1050.35058

[2] Christianson, Hans High-frequency resolvent estimates on asymptotically Euclidean warped products (http://arxiv.org/abs/1303.6172 )

[3] Christianson, Hans Semiclassical non-concentration near hyperbolic orbits, J. Funct. Anal., Tome 246 (2007) no. 2, pp. 145-195 | Article | MR 2321040 | Zbl 1119.58018

[4] Christianson, Hans Dispersive estimates for manifolds with one trapped orbit, Comm. Partial Differential Equations, Tome 33 (2008) no. 7-9, pp. 1147-1174 | Article | MR 2450154 | Zbl 1152.58024

[5] Christianson, Hans Corrigendum to “Semiclassical non-concentration near hyperbolic orbits” [J. Funct. Anal. 246 (2) (2007) 145–195], J. Funct. Anal., Tome 258 (2010) no. 3, pp. 1060-1065 | Article | MR 2321040 | Zbl 1181.58019

[6] Christianson, Hans Quantum monodromy and nonconcentration near a closed semi-hyperbolic orbit, Trans. Amer. Math. Soc., Tome 363 (2011) no. 7, pp. 3373-3438 | Article | MR 2775812 | Zbl 1230.58020

[7] Christianson, Hans; Metcalfe, Jason Sharp local smoothing for warped product manifolds with smooth inflection transmission, Indiana Univ. Math. J., Tome 63 (2014) no. 4, pp. 969-992 | Article | MR 3263918 | Zbl 1305.35023

[8] Christianson, Hans; Wunsch, Jared Local smoothing for the Schrödinger equation with a prescribed loss, Amer. J. Math., Tome 135 (2013) no. 6, pp. 1601-1632 | Article | MR 3145005 | Zbl 1286.35215

[9] Hörmander, Lars On the existence and the regularity of solutions of linear pseudo-differential equations, Enseignement Math. (2), Tome 17 (1971), pp. 99-163 | MR 331124 | Zbl 0224.35084

[10] Colin De Verdière, Y.; Parisse, B. Équilibre instable en régime semi-classique, Séminaire sur les Équations aux Dérivées Partielles, 1993–1994, École Polytech., Palaiseau (1994), Exp. No. VI, 11 pages | MR 1300901 | Zbl 0880.34084

[11] Colin De Verdière, Yves; Parisse, Bernard Équilibre instable en régime semi-classique. II. Conditions de Bohr-Sommerfeld, Ann. Inst. H. Poincaré Phys. Théor., Tome 61 (1994) no. 3, pp. 347-367 | Numdam | MR 1311072 | Zbl 0845.35076

[12] Zworski, Maciej Semiclassical analysis, American Mathematical Society, Providence, RI, Graduate Studies in Mathematics, Tome 138 (2012), xii+431 pages | MR 2952218 | Zbl 1252.58001