Revised : 2014-09-30
Accepted : 2014-10-23
Published online : 2015-11-09
Classification: 53C15, 53C29, 53C12
Keywords: Lorentzian manifolds, holonomy groups, Betti number
@article{AIF_2015__65_4_1423_0, author = {Schliebner, Daniel}, title = {On Lorentzian manifolds with highest first Betti number}, journal = {Annales de l'Institut Fourier}, publisher = {Association des Annales de l'institut Fourier}, volume = {65}, number = {4}, year = {2015}, pages = {1423-1436}, language = {en}, url = {https://aif.centre-mersenne.org/item/AIF_2015__65_4_1423_0} }
Schliebner, Daniel. On Lorentzian manifolds with highest first Betti number. Annales de l'Institut Fourier, Volume 65 (2015) no. 4, pp. 1423-1436. https://aif.centre-mersenne.org/item/AIF_2015__65_4_1423_0/
[1] Holonomy groups of Lorentzian manifolds: a status report, Global differential geometry, Springer, Heidelberg (Springer Proc. Math.) Tome 17 (2012), pp. 163-200 | Article | MR 3289843 | Zbl 1242.53001
[2] The homology sequence of the double covering: Betti numbers and duality, Proc. Amer. Math. Soc., Tome 23 (1969), pp. 714-717 | MR 253338 | Zbl 0204.56103
[3] Transversally parallelizable foliations of codimension two, Trans. Amer. Math. Soc., Tome 194 (1974), p. 79-102, erratum, ibid. 207 (1975), 406 | Article | MR 370617 | Zbl 0302.57009
[4] Finiteness and tenseness theorems for Riemannian foliations, Amer. J. Math., Tome 120 (1998) no. 6, pp. 1237-1276 | Article | MR 1657170 | Zbl 0964.53019
[5] Topology of 4-manifolds, Princeton University Press, Princeton, NJ, Princeton Mathematical Series, Tome 39 (1990), viii+259 pages | MR 1201584 | Zbl 0705.57001
[6] Holonomy groups of Lorentzian manifolds: classification, examples, and applications, Recent developments in pseudo-Riemannian geometry, Eur. Math. Soc., Zürich (ESI Lect. Math. Phys.) (2008), pp. 53-96 | MR 2436228 | Zbl 1152.53036
[7] The lower central and derived series of the braid groups of the sphere, Trans. Amer. Math. Soc., Tome 361 (2009) no. 7, pp. 3375-3399 | Article | MR 2491885 | Zbl 1226.20027
[8] Modified differentials and basic cohomology for Riemannian foliations, J. Geom. Anal., Tome 23 (2013) no. 3, pp. 1314-1342 | Article | MR 3078356 | Zbl 1276.53031
[9] Algebraic topology, Cambridge University Press, Cambridge (2002), xii+544 pages | MR 1867354 | Zbl 1044.55001
[10] Global Aspects of Holonomy in Pseudo-Riemannian Geometry, Humboldt-Universität zu Berlin (2011) (Ph. D. Thesis)
[11] Screen bundles of Lorentzian manifolds and some generalisations of pp-waves, J. Geom. Phys., Tome 56 (2006) no. 10, pp. 2117-2134 | Article | MR 2241741 | Zbl 1111.53020
[12] Completeness of compact Lorentzian manifolds with Abelian holonomy (2013) (http://arxiv.org/abs/1306.0120 )
[13] An application of stochastic flows to Riemannian foliations, Houston J. Math., Tome 26 (2000) no. 3, pp. 481-515 | MR 1811936 | Zbl 1159.58311
[14] Affine structures in -manifolds. V. The triangulation theorem and Hauptvermutung, Ann. of Math. (2), Tome 56 (1952), pp. 96-114 | Article | MR 48805 | Zbl 0048.17102
[15] Deux remarques sur les flots riemanniens, Manuscripta Math., Tome 51 (1985) no. 1-3, pp. 145-161 | Article | MR 788676 | Zbl 0585.53026
[16] Riemannian geometry, Springer, New York, Graduate Texts in Mathematics, Tome 171 (2006), xvi+401 pages | MR 2243772 | Zbl 1220.53002
[17] Sur la courbure moyenne des variétés intégrales d’une équation de Pfaff , C. R. Acad. Sci. Paris, Tome 231 (1950), p. 101-102 | MR 36065 | Zbl 0040.24401
[18] The Gysin sequence for Riemannian flows, Global differential geometry: the mathematical legacy of Alfred Gray (Bilbao, 2000), Amer. Math. Soc., Providence, RI (Contemp. Math.) Tome 288 (2001), pp. 415-419 | MR 1871045 | Zbl 0999.58002
[19] Differential geometry: Cartan’s generalization of Klein’s Erlangen program. Foreword by S. S. Chern., Berlin: Springer (1997), xix + 421 pages | MR 1453120 | Zbl 0876.53001
[20] Geometry of foliations, Birkhäuser Verlag, Basel, Monographs in Mathematics, Tome 90 (1997), viii+305 pages | Article | MR 1456994 | Zbl 0905.53002
[21] On irreducible -manifolds which are sufficiently large, Ann. of Math. (2), Tome 87 (1968), pp. 56-88 | Article | MR 224099 | Zbl 0157.30603
[22] Surgery on compact manifolds, American Mathematical Society, Providence, RI, Mathematical Surveys and Monographs, Tome 69 (1999), xvi+302 pages (Edited and with a foreword by A. A. Ranicki) | Article | MR 1687388 | Zbl 0935.57003