Soit une variété projective normale et un diviseur de Cartier ample sur . Supposons que n’est pas l’espace projectif. Nous montrons que le faisceau cotangent tordu est génériquement nef par rapport à la polarisation . Comme conséquence nous obtenons un théorème de Kobayashi-Ochiai pour les feuilletages : si est un feuilletage tel que , alors est au plus le rang de .
Let be a normal projective variety, and let be an ample Cartier divisor on . Suppose that is not the projective space. We prove that the twisted cotangent sheaf is generically nef with respect to the polarisation . As an application we prove a Kobayashi-Ochiai theorem for foliations: if is a foliation such that , then is at most the rank of .
Révisé le : 2014-05-16
Accepté le : 2014-06-13
DOI : https://doi.org/10.5802/aif.2917
Classification : 14F10, 37F75, 14M22, 14E30, 14J40
Mots clés : faisceau cotangent, feuilletages, théorème de Kobayashi-Ochiai
@article{AIF_2014__64_6_2465_0, author = {H\"oring, Andreas}, title = {Twisted cotangent sheaves and a Kobayashi-Ochiai theorem for foliations}, journal = {Annales de l'Institut Fourier}, pages = {2465--2480}, publisher = {Association des Annales de l'institut Fourier}, volume = {64}, number = {6}, year = {2014}, doi = {10.5802/aif.2917}, zbl = {06387344}, mrnumber = {3331171}, language = {en}, url = {https://aif.centre-mersenne.org/item/AIF_2014__64_6_2465_0/} }
Höring, Andreas. Twisted cotangent sheaves and a Kobayashi-Ochiai theorem for foliations. Annales de l'Institut Fourier, Tome 64 (2014) no. 6, pp. 2465-2480. doi : 10.5802/aif.2917. https://aif.centre-mersenne.org/item/AIF_2014__64_6_2465_0/
[1] Some remarks on the study of good contractions, Manuscripta Math., Tome 87 (1995) no. 3, pp. 359-367 | Article | MR 1340353 | Zbl 0860.14009
[2] Minimal model program with scaling and adjunction theory, Internat. J. Math., Tome 24 (2013) no. 2, 1350007, 13 pages | Article | MR 3045341 | Zbl 1273.14030
[3] On codimension 1 del Pezzo foliations on varieties with mild singularities (2012) (arXiv 1210.4013, preprint, to appear in Mathematische Annalen)
[4] On Fano foliations, Adv. Math., Tome 238 (2013), pp. 70-118 | Article | MR 3033631 | Zbl 1282.14085
[5] Cohomological characterizations of projective spaces and hyperquadrics, Invent. Math., Tome 174 (2008) no. 2, pp. 233-253 | Article | MR 2439607 | Zbl 1162.14037
[6] Compact complex surfaces, Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics, Tome 4, Springer-Verlag, Berlin, 2004, xii+436 pages | MR 2030225 | Zbl 1036.14016
[7] The adjunction theory of complex projective varieties, de Gruyter Expositions in Mathematics, Tome 16, Walter de Gruyter & Co., Berlin, 1995, xxii+398 pages | MR 1318687 | Zbl 0845.14003
[8] Rational curves on foliated varieties (February 2001), pp. 1-29 (Prépublications de l’IHES)
[9] Higher-dimensional algebraic geometry, Universitext, Springer-Verlag, New York, 2001, xiv+233 pages | MR 1841091 | Zbl 0978.14001
[10] Compact complex manifolds with numerically effective tangent bundles, J. Algebraic Geom., Tome 3 (1994) no. 2, pp. 295-345 | MR 1257325 | Zbl 0827.14027
[11] Caractérisation de l’espace projectif, Manuscripta Math., Tome 115 (2004) no. 1, pp. 19-30 | Article | MR 2092774 | Zbl 1070.14012
[12] Restrictions of semistable bundles on projective varieties, Comment. Math. Helv., Tome 59 (1984) no. 4, pp. 635-650 | Article | EuDML 139994 | MR 780080 | Zbl 0599.14015
[13] Remarks on quasi-polarized varieties, Nagoya Math. J., Tome 115 (1989), pp. 105-123 | MR 1018086 | Zbl 0699.14002
[14] Varieties of small Kodaira dimension whose cotangent bundles are semiample, Compositio Math., Tome 84 (1992) no. 1, pp. 43-52 | EuDML 90177 | Numdam | MR 1183561 | Zbl 0763.14015
[15] Intersection theory, Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics, Tome 2, Springer-Verlag, Berlin, 1998, xiv+470 pages | MR 1644323 | Zbl 0541.14005
[16] Algebraic geometry, Springer-Verlag, New York-Heidelberg, 1977, xvi+496 pages (Graduate Texts in Mathematics, No. 52) | MR 463157 | Zbl 0531.14001
[17] The sectional genus of quasi-polarised varieties, Arch. Math. (Basel), Tome 95 (2010) no. 2, pp. 125-133 | Article | MR 2674248 | Zbl 1198.14008
[18] On a conjecture of Beltrametti and Sommese, J. Algebraic Geom., Tome 21 (2012) no. 4, pp. 721-751 | Article | MR 2957694 | Zbl 1253.14007
[19] Mori contractions of maximal length, Publ. Res. Inst. Math. Sci., Tome 49 (2013) no. 1, pp. 215-228 | Article | MR 3030002 | Zbl 1262.14010
[20] Rationally connected foliations after Bogomolov and McQuillan, J. Algebraic Geom., Tome 16 (2007) no. 1, pp. 65-81 | Article | MR 2257320 | Zbl 1120.14011
[21] Characterizations of complex projective spaces and hyperquadrics, J. Math. Kyoto Univ., Tome 13 (1973), pp. 31-47 | MR 316745 | Zbl 0261.32013
[22] Singularities of the minimal model program, Cambridge Tracts in Mathematics, Tome 200, Cambridge University Press, Cambridge, 2013, x+370 pages (With a collaboration of Sándor Kovács) | MR 3057950 | Zbl 1282.14028
[23] Birational geometry of algebraic varieties, Cambridge Tracts in Mathematics, Tome 134, Cambridge University Press, Cambridge, 1998, viii+254 pages (With the collaboration of C. H. Clemens and A. Corti, Translated from the 1998 Japanese original) | MR 1658959 | Zbl 0926.14003
[24] Positivity in algebraic geometry. II, Ergebnisse der Mathematik und ihrer Grenzgebiete, Tome 49, Springer-Verlag, Berlin, 2004, xviii+385 pages (Positivity for vector bundles, and multiplier ideals) | MR 2095472 | Zbl 1093.14500
[25] Semistable sheaves on projective varieties and their restriction to curves, Math. Ann., Tome 258 (1981/82) no. 3, pp. 213-224 | Article | EuDML 163590 | MR 649194 | Zbl 0473.14001
[26] Geometry of higher-dimensional algebraic varieties, DMV Seminar, Tome 26, Birkhäuser Verlag, Basel, 1997, vi+217 pages | MR 1468476 | Zbl 0865.14018
[27] Caractérisations des espaces projectifs et des quadriques (2010) (arXiv)
[28] A cohomological characterization of , Invent. Math., Tome 72 (1983) no. 2, pp. 315-322 | Article | EuDML 143023 | MR 700774 | Zbl 0544.14013