Accepted : 2013-07-26
Classification: 37A15, 37A25, 28D15, 22E66
Keywords: Infinite-dimensional Lie groups, classification of ergodic measures, Hua-Pickrell measures, orbital measures, weak compactness.
@article{AIF_2014__64_3_893_0, author = {Bufetov, Alexander I.}, title = {Finiteness of Ergodic Unitarily Invariant Measures on Spaces of Infinite Matrices}, journal = {Annales de l'Institut Fourier}, publisher = {Association des Annales de l'institut Fourier}, volume = {64}, number = {3}, year = {2014}, pages = {893-907}, zbl = {06387294}, mrnumber = {3330157}, language = {en}, url = {https://aif.centre-mersenne.org/item/AIF_2014__64_3_893_0} }
Bufetov, Alexander I. Finiteness of Ergodic Unitarily Invariant Measures on Spaces of Infinite Matrices. Annales de l'Institut Fourier, Volume 64 (2014) no. 3, pp. 893-907. https://aif.centre-mersenne.org/item/AIF_2014__64_3_893_0/
[1] Measure theory, Springer-Verlag, Berlin Tome II (2007) | MR 2267655 | Zbl 1120.28001
[2] Infinite random matrices and ergodic measures, Comm. Math. Phys., Tome 223 (2001) no. 1, pp. 87-123 | MR 1860761 | Zbl 0987.60020
[3] Ergodic decomposition for measures quasi-invariant under Borel actions of inductively compact groups, Sbornik Mathematics, Tome 205 (2014) no. 2, pp. 39-71 | MR 3204667
[4] Unitary representations of infinite-dimensional classical groups (Russian) (D.Sci Thesis, Institute of Geography of the Russian Academy of Sciences; online at http://www.iitp.ru/upload/userpage/52/Olshanski_thesis.pdf)
[5] Unitary representations of infinite-dimensional pairs (G,K) and the formalism of R. Howe, Representation of Lie Groups and Related Topics, Gordon and Breach (Advanced Studies in Contemporary Mathematics) Tome 7 (1990), pp. 165-189 (online at http://www.iitp.ru/upload/userpage/52/HoweForm.pdf) | MR 1104279 | Zbl 0724.22020
[6] Ergodic unitarily invariant measures on the space of infinite Hermitian matrices, Contemporary mathematical physics, Amer. Math. Soc., Providence, RI (Amer. Math. Soc. Transl. Ser. 2) Tome 175 (1999), pp. 137-175 | MR 1402920 | Zbl 0853.22016
[7] Measures on infinite-dimensional Grassmann manifolds, J. Funct. Anal., Tome 70 (1987), pp. 323-356 | MR 874060 | Zbl 0621.28008
[8] Mackey analysis of infinite classical motion groups, Pacific J. Math., Tome 150 (1991) no. 1, pp. 139-166 | MR 1120717 | Zbl 0739.22016
[9] A Bochner type theorem for inductive limits of Gelfand pairs, Ann. Inst. Fourier (Grenoble), Tome 58 (2008) no. 5, pp. 1551-1573 | Numdam | MR 2445827 | Zbl 1154.22015
[10] Asymptotic harmonic analysis on the space of square complex matrices, J. Lie Theory, Tome 18 (2008) no. 3, pp. 645-670 | MR 2493060 | Zbl 1167.22008
[11] A description of invariant measures for actions of certain infinite-dimensional groups, (Russian) Dokl. Akad. Nauk SSSR, Tome 218 (1974), pp. 749-752 | MR 372161 | Zbl 0324.28014