Asymptotic cohomology vanishing and a converse to the Andreotti-Grauert theorem on surfaces
Annales de l'Institut Fourier, Volume 63 (2013) no. 6, p. 2199-2221
In this paper, we study relations between positivity of the curvature and the asymptotic behavior of the higher cohomology group for tensor powers of a holomorphic line bundle. The Andreotti-Grauert vanishing theorem asserts that partial positivity of the curvature implies asymptotic vanishing of certain higher cohomology groups. We investigate the converse implication of this theorem under various situations. For example, we consider the case where a line bundle is semi-ample or big. Moreover, we show the converse implication holds on a projective surface without any assumptions on a line bundle.
Dans cet article, nous étudions les relations entre la positivité de la courbure et le comportement asymptotique de la cohomologie de degré supérieur des puissances tensorielles d’un fibré en droites holomorphe. Le théorème d’annulation d’Andreotti-Grauert affirme que la positivité partielle de la courbure implique l’annulation asymptotique de la cohomologie de certains degrés supérieurs. Nous étudions la réciproque de ce théorème dans plusieurs situations. Par exemple, nous considérons le cas d’un fibré en droite semi-ample ou gros. De plus, nous montrons que la réciproque du théorème d’Andreotti-Grauert est vraie sur les surfaces projectives sans aucune hypothèse sur le fibré en droites.
DOI : https://doi.org/10.5802/aif.2826
Classification:  14C20,  14F17,  32L15
Keywords: Asymptotic cohomology groups, partial cohomology vanishing, q-positivity, hermitian metrics, Chern curvatures.
@article{AIF_2013__63_6_2199_0,
     author = {Matsumura, Shin-ichi},
     title = {Asymptotic cohomology vanishing and a~converse to the Andreotti-Grauert theorem on surfaces},
     journal = {Annales de l'Institut Fourier},
     publisher = {Association des Annales de l'institut Fourier},
     volume = {63},
     number = {6},
     year = {2013},
     pages = {2199-2221},
     doi = {10.5802/aif.2826},
     zbl = {1298.14012},
     mrnumber = {3237444},
     language = {en},
     url = {https://aif.centre-mersenne.org/item/AIF_2013__63_6_2199_0}
}
Asymptotic cohomology vanishing and a converse to the Andreotti-Grauert theorem on surfaces. Annales de l'Institut Fourier, Volume 63 (2013) no. 6, pp. 2199-2221. doi : 10.5802/aif.2826. https://aif.centre-mersenne.org/item/AIF_2013__63_6_2199_0/

[1] Andreotti, A; Grauert, H. Théorème de finitude pour la cohomologie des espaces complexes, Bull. Soc. Math. France, Tome 90 (1962), pp. 193-259 | Numdam | MR 150342 | Zbl 0106.05501

[2] Barlet, D. Convexité au voisinage d’un cycle, (french), Functions of several complex variables, IV (Sem. François Norguet, 1977–1979) (French), Springer, Berlin (Lecture Notes in Math.) Tome 807 (1980), pp. 102-121 | MR 592787 | Zbl 0434.32012

[3] Boucksom, S. Divisorial Zariski decompositions on compact complex manifolds, Ann. Sci. École Norm. Sup. (4), Tome 37 (2004) no. 1, pp. 45-76 | Numdam | MR 2050205 | Zbl 1054.32010

[4] Boucksom, S.; Demailly, J. P.; Paun, M.; T., Peternell The pseudo-effective cone of a compact Kähler manifold and varieties of negative Kodaira dimension (preprint, arXiv:math/0405285v1)

[5] Demailly, J. P. Champs magnétiques et inégalités de Morse pour la d '' -cohomologie, Ann. Inst. Fourier (Grenoble), Tome 35 (1985) no. 4, pp. 189-229 | Article | Numdam | MR 812325 | Zbl 0565.58017

[6] Demailly, J. P. Cohomology of q-convex spaces in top degrees, Math. Z, Tome 204 (1990) no. 2, pp. 283-295 | Article | MR 1055992 | Zbl 0682.32017

[7] Demailly, J. P. Holomorphic Morse inequalities and asymptotic cohomology groups: a tribute to Bernhard Riemann, Milan J. Math., Tome 78 (2010) no. 1, pp. 265-277 | Article | MR 2684780 | Zbl 1205.32017

[8] Demailly, J. P. A converse to the Andreotti-Grauert theorem, Ann. Fac. Sci. Toulouse Math. (6), Tome 20 (2011) (Fascicule Special, p. 123-135) | Article | Numdam | MR 2858170 | Zbl 1228.32020

[9] Demailly, J. P.; Peternell, T.; Schneider, M. Holomorphic line bundles with partially vanishing cohomology, Proceedings of the Hirzebruch 65 Conference on Algebraic Geometry (Ramat Gan, 1993), Bar-Ilan Univ (Israel Math. Conf. Proc.) Tome 9 (1996), pp. 165-198 | MR 1360502 | Zbl 0859.14005

[10] Ein, L.; Lazarsfeld, R.; Musţǎ, M.; Nakamaye, M.; Popa, M. Asymptotic invariants of base loci, Ann. Inst. Fourier (Grenoble), Tome 56 (2006) no. 6, pp. 1701-1734 | Article | Numdam | MR 2282673 | Zbl 1127.14010

[11] Fujita, T. Semipositive line bundles, J. Fac. Sci. Univ. Tokyo Sect. IA Math., Tome 30 (1983) no. 2, pp. 353-378 | MR 722501 | Zbl 0561.32012

[12] Fuse, H.; Ohsawa, T. On a curvature property of effective divisors and its application to sheaf cohomology, Publ. Res. Inst. Math. Sci., Tome 45 (2009) no. 4, pp. 1033-1039 | Article | MR 2597128 | Zbl 1190.32009

[13] Küronya, A. Positivity on subvarieties and vanishing of higher cohomology (preprint, arXiv:1012.1102v1)

[14] Lazarsfeld, R. Positivity in Algebraic Geometry I, Springer Verlag, Berlin, Ergebnisse der Mathematik und ihrer Grenzgebiete. 3., Tome 48 (2004) (ISBN: 3-540-22533-1) | MR 2095471 | Zbl 1093.14500

[15] Matsumura, S. Restricted volumes and divisorial Zariski decompositions (preprint, arXiv:1005.1503v1, to appear in Amer. J. Math) | Zbl 1277.14006

[16] Matsumura, S. On the curvature of holomorphic line bundles with partially vanishin cohomology, RIMS, Kôkyûroku, Potential theory and fiber spaces (2012) no. 1783, pp. 155-169

[17] Ohsawa, T. Completeness of noncompact analytic spaces, Publ. Res. Inst. Math. Sci., Tome 20 (1984) no. 3, pp. 683-692 | Article | MR 759689 | Zbl 0568.32008

[18] Richberg, R. Stetige streng pseudokonvexe Funktionen, Math. Ann., Tome 175 (1968), pp. 257-286 | Article | MR 222334 | Zbl 0153.15401

[19] Siu, Y. T. Every Stein subvariety admits a Stein neighborhood, Invent. Math., Tome 38 (1976/77) no. 1, pp. 89-100 | Article | MR 435447 | Zbl 0343.32014

[20] Sommese, A. J. Submanifolds of Abelian varieties, Math. Ann., Tome 233 (1978) no. 3, pp. 229-256 | Article | MR 466647 | Zbl 0381.14007

[21] Totaro, B. Line bundles with partially vanishing cohomology (preprint, arXiv:1007.3955v1, to appear in J. Eur. Math. Soc)

[22] Yau, S. T. On the Ricci curvature of a compact Kähler manifold and the complex Monge-Ampère equation, I, Comm. Pure Appl. Math., Tome 31 (1978) no. 3, pp. 339-411 | Article | MR 480350 | Zbl 0369.53059

[23] Zariski, O. The theorem of Riemann-Roch for high multiples of an effective divisor on an algebraic surface, Ann. of Math. (2), Tome 76 (1962), pp. 560-615 | Article | MR 141668 | Zbl 0124.37001