A remark on a conjecture of Hain and Looijenga
Annales de l'Institut Fourier, Volume 61 (2011) no. 7, p. 2745-2750
We show that the natural generalization of a conjecture of Hain and Looijenga to the case of pointed curves holds for all g and n if and only if the tautological rings of the moduli spaces of curves with rational tails and of stable curves are Gorenstein.
Nous montrons que la généralisation naturelle d’une conjecture de Hain et Looijenga au cas des courbes épointées tient pour tout g et n si et seulement si les anneaux tautologiques des espaces des modules des courbes à queues rationnelles et des courbes stables sont des anneaux de Gorenstein.
DOI : https://doi.org/10.5802/aif.2792
Classification:  14H10,  13H10
Keywords: Moduli spaces of curves, tautological ring, Gorenstein ring
@article{AIF_2011__61_7_2745_0,
     author = {Faber, Carel},
     title = {A remark on a conjecture of Hain and Looijenga},
     journal = {Annales de l'Institut Fourier},
     publisher = {Association des Annales de l'institut Fourier},
     volume = {61},
     number = {7},
     year = {2011},
     pages = {2745-2750},
     doi = {10.5802/aif.2792},
     zbl = {1278.14037},
     mrnumber = {3112506},
     language = {en},
     url = {https://aif.centre-mersenne.org/item/AIF_2011__61_7_2745_0}
}
A remark on a conjecture of Hain and Looijenga. Annales de l'Institut Fourier, Volume 61 (2011) no. 7, pp. 2745-2750. doi : 10.5802/aif.2792. https://aif.centre-mersenne.org/item/AIF_2011__61_7_2745_0/

[1] Faber, C. A conjectural description of the tautological ring of the moduli space of curves, Moduli of curves and abelian varieties, Vieweg, Braunschweig (Aspects Math., E33) (1999), pp. 109-129 | MR 1722541 | Zbl 0978.14029

[2] Faber, C. Hodge integrals, tautological classes and Gromov-Witten theory, Sūrikaisekikenkyūsho Kōkyūroku (Proceedings of the Workshop “Algebraic Geometry and Integrable Systems related to String Theory” (Kyoto, 2000)) (2001) no. 1232, pp. 78-87 | MR 1905884

[3] Faber, C.; Pandharipande, R. Logarithmic series and Hodge integrals in the tautological ring, with an appendix by Don Zagier. Dedicated to William Fulton on the occasion of his 60th birthday. Michigan Math. J., Tome 48 (2000), pp. 215-252 | MR 1786488 | Zbl 1090.14005

[4] Faber, C.; Pandharipande, R. Relative maps and tautological classes, J. Eur. Math. Soc. (JEMS), Tome 7 (2005) no. 1, pp. 13-49 | MR 2120989 | Zbl 1084.14054

[5] Graber, T.; Pandharipande, R. Constructions of nontautological classes on moduli spaces of curves, Michigan Math. J., Tome 51 (2003) no. 1, pp. 93-109 | MR 1960923 | Zbl 1079.14511

[6] Graber, T.; Vakil, R. On the tautological ring of M ¯ g,n , Turkish J. Math., Tome 25 (2001) no. 1, pp. 237-243 | MR 1829089 | Zbl 1040.14007

[7] Graber, T.; Vakil, R. Relative virtual localization and vanishing of tautological classes on moduli spaces of curves, Duke Math. J., Tome 130 (2005) no. 1, pp. 1-37 | MR 2176546 | Zbl 1088.14007

[8] Hain, R.; Looijenga, E. Mapping class groups and moduli spaces of curves, Algebraic geometry—Santa Cruz 1995, Part 2, Amer. Math. Soc., Providence, RI (Proc. Sympos. Pure Math.) Tome 62 (1997), pp. 97-142 | MR 1492535 | Zbl 0914.14013

[9] Keel, S. Intersection theory of moduli space of stable n-pointed curves of genus zero, Trans. Amer. Math. Soc., Tome 330 (1992) no. 2, pp. 545-574 | MR 1034665 | Zbl 0768.14002

[10] Looijenga, E. On the tautological ring of M g , Invent. Math., Tome 121 (1995) no. 2, pp. 411-419 | MR 1346214 | Zbl 0851.14017

[11] Pandharipande, R. Three questions in Gromov-Witten theory, Higher Ed. Press, Beijing (Proceedings of the International Congress of Mathematicians, Vol. II (Beijing, 2002)) (2002), pp. 503-512 | MR 1957060 | Zbl 1047.14043

[12] Petersen, D. The structure of the tautological ring in genus one (Preprint, arXiv:1205.1586)

[13] Tavakol, M. The tautological ring of M 1,n ct , Ann. Inst. Fourier (Grenoble), Tome 61.7 (2011)

[14] Tavakol, M. The tautological ring of the moduli space M 2,n rt (Preprint, arXiv:1101.5242)