Decompositions of an Abelian surface and quadratic forms
Annales de l'Institut Fourier, Volume 61 (2011) no. 2, p. 717-743
When a complex Abelian surface can be decomposed into a product of two elliptic curves, how many decompositions does the Abelian surface admit? We provide arithmetic formulae for the number of such decompositions.
Quand une surface abélienne complexe admet une décomposition en produit de deux courbes elliptiques, combien y a-t-il de telles décompositions possibles ? Nous donnons des formules arithmétiques pour le nombre de telles décompositions.
DOI : https://doi.org/10.5802/aif.2627
Classification:  14K02,  14H52,  11E16
Keywords: Abelian surface, elliptic curve, binary quadratic form
@article{AIF_2011__61_2_717_0,
     author = {Ma, Shouhei},
     title = {Decompositions of an Abelian surface and quadratic forms},
     journal = {Annales de l'Institut Fourier},
     publisher = {Association des Annales de l'institut Fourier},
     volume = {61},
     number = {2},
     year = {2011},
     pages = {717-743},
     doi = {10.5802/aif.2627},
     zbl = {1231.14036},
     mrnumber = {2895071},
     language = {en},
     url = {https://aif.centre-mersenne.org/item/AIF_2011__61_2_717_0}
}
Decompositions of an Abelian surface and quadratic forms. Annales de l'Institut Fourier, Volume 61 (2011) no. 2, pp. 717-743. doi : 10.5802/aif.2627. https://aif.centre-mersenne.org/item/AIF_2011__61_2_717_0/

[1] Baily, W. L. Jr.; Borel, A. Compactification of arithmetic quotients of bounded symmetric domains, Ann. of Math. (2), Tome 84 (1966), pp. 442-528 | Article | MR 216035 | Zbl 0154.08602

[2] Birkenhake, C.; Lange, H. Complex abelian varieties. Second edition, Springer, Grundlehren der Mathematischen Wissenschaften, Tome 302 (2004) | MR 2062673 | Zbl 1056.14063

[3] Cassels, J. W. S. Rational quadratic forms. London Mathematical Society Monographs, Academic Press Tome 13 (1978) | MR 522835 | Zbl 0395.10029

[4] Cox, D. A. Primes of the form x 2 + n y 2 , Wiley-Interscience (1989) | MR 1028322 | Zbl 0956.11500

[5] Hayashida, T. A class number associated with a product of two elliptic curves, Natur. Sci. Rep. Ochanomizu Univ., Tome 16 (1965), pp. 9-19 | MR 202715 | Zbl 0151.27501

[6] Hosono, S.; Lian, B. H.; Oguiso, K.; Yau, S.-T. Fourier-Mukai number of a K3 surface, Algebraic structures and moduli spaces, Amer. Math. Soc., Providence (CRM Proc. Lecture Notes) Tome 38 (2004), pp. 177-192 | MR 2096145 | Zbl 1076.14045

[7] Lange, H. Principal polarizations on products of elliptic curves, The geometry of Riemann surfaces and abelian varieties, Amer. Math. Soc., Providence (Contemp. Math.) Tome 397 (2006), pp. 153-162 | MR 2218006 | Zbl 1118.14050

[8] Lehner, J.; Newman, M. Weierstrass points of Γ 0 (n), Ann. of Math. (2), Tome 79 (1964), pp. 360-368 | Article | MR 161841 | Zbl 0124.29203

[9] Montgomery, H. L.; Weinberger, P. J. Notes on small class numbers, Acta Arith., Tome 24 (1973/74), pp. 529-542 | MR 357373 | Zbl 0285.12004

[10] Nikulin, V. V. Integral symmetric bilinear forms and some of their geometric applications, Izv. Akad. Nauk SSSR Ser. Mat., Tome 43 (1979) no. 1, pp. 111-177 | MR 525944 | Zbl 0408.10011

[11] Ruppert, W. M. When is an abelian surface isomorphic or isogeneous to a product of elliptic curves?, Math. Z., Tome 203 (1990) no. 2, pp. 293-299 | Article | MR 1033438 | Zbl 0712.14028

[12] Shioda, T. The period map of Abelian surfaces, J. Fac. Sci. Univ. Tokyo, Tome 25 (1978) no. 1, pp. 47-59 | MR 480530 | Zbl 0405.14021

[13] Shioda, T.; Mitani, N. Singular abelian surfaces and binary quadratic forms, Classification of algebraic varieties and compact complex manifolds, Springer (Lecture Notes in Math.) Tome 412 (1974), pp. 259-287 | MR 382289 | Zbl 0302.14011

[14] Stark, H. M. On complex quadratic fields with class-number two, Math. Comp., Tome 29 (1975), pp. 289-302 | MR 369313 | Zbl 0321.12009

[15] Taylor, D. E. The geometry of the classical groups, Heldermann Verlag, Sigma Series in Pure Mathematics, Tome 9 (1992) | MR 1189139 | Zbl 0767.20001

[16] Wall, C. T. C. Quadratic forms on finite groups, and related topics, Topology, Tome 2 (1963), pp. 281-298 | Article | MR 156890 | Zbl 0215.39903